Những câu hỏi liên quan
Nguyễn Thùy Dương
Xem chi tiết
Akai Haruma
25 tháng 10 2017 lúc 21:34

Lời giải:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\text{VT}=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}=\frac{\left(\frac{x}{y}\right)^2}{\frac{1}{y}}+\frac{\left(\frac{y}{z}\right)^2}{\frac{1}{z}}+\frac{\left(\frac{z}{x}\right)^2}{\frac{1}{x}}\geq \frac{\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)^2}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}\)

Giờ ta cần chỉ ra \(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\geq \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

Thật vậy, do $xyz=1$ nên tồn tại các số dương \(a,b,c\) sao cho:

\((x,y,z)=\left(\frac{a}{b};\frac{b}{c};\frac{c}{a}\right)\)

Bài toán tương đương với

\(\frac{ab}{c^2}+\frac{bc}{a^2}+\frac{ca}{b^2}\geq \frac{a}{b}+\frac{b}{c}+\frac{c}{a}\Leftrightarrow (ab)^3+(bc)^3+(ca)^3\geq a^3bc^2+b^3ca^2+c^3ab^2\)

Áp dụng BĐT Am-Gm ta có:

\((ab)^3+(ab)^3+(bc)^3\geq 3b^3ca^2\)

Thực hiện tương tự và cộng theo vế, suy ra:

\(3[(ab)^3+(bc)^3+(ca)^3]\geq 3(a^3bc^2+b^3ca^2+c^3ab^2)\)

\(\Leftrightarrow (ab)^3+(bc)^3+(ca)^3\geq a^3bc^2+b^3ca^2+c^3ab^2\)

Do đó ta có đpcm.

Dấu bằng xảy ra khi \(a=b=c\Leftrightarrow x=y=z=1\)

Bình luận (0)
Nguyễn Thùy Dương
23 tháng 10 2017 lúc 21:30
Bình luận (0)
KZ
23 tháng 10 2017 lúc 22:17

làm thế này chả biết có đúng ko nữa, sếp Ace có rảnh thì xem giúp em nhé ^^!

theo Bđt Cauchy, ta có:

\(x^3z+xy^3+yz^3\ge\sqrt[3]{x^4y^4z^4}=1\)

\(-x^2z-xy^2-yz^2\ge-\sqrt[3]{x^3y^3z^3}=-1\)

cộng theo vế 2 bất đẳng thức trên, ta được:

(cái này tớ muốn lách luật: không được trừ theo vế 2 bđt cùng chiều, chả biết có đc ko)

\(x^3z+xy^3+yz^3-x^2z-xy^2-yz^2\ge0\)

\(\Leftrightarrow x^2z\left(x-1\right)+xy^2\left(y-1\right)+yz^2\left(z-1\right)\ge0\)

\(\Leftrightarrow\dfrac{x\left(x-1\right)}{y}+\dfrac{y\left(y-1\right)}{z}+\dfrac{z\left(z-1\right)}{x}\ge0\)

\(\Leftrightarrow\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}-\dfrac{x}{y}-\dfrac{y}{x}-\dfrac{z}{x}\ge0\)

\(\Leftrightarrow\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}\ge\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{z}{x}\) (đpcm)

Bình luận (2)
Phạm Đức Minh
Xem chi tiết
vũ tiền châu
29 tháng 5 2018 lúc 21:26

Ta có \(A=\frac{x^4}{x^3+x^2y+xy^2}+...\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^3+y^3+z^3+xy^2+yz^2+zx^2+x^2y+y^2z+z^2x}\)

=> \(A\ge\frac{\left(x^2+y^2+z^2\right)^2}{\left(x^2+y^2+z^2\right)\left(x+y+z\right)}=\frac{x^2+y^2+z^2}{x+y+z}\ge\frac{x+y+z}{3}\left(ĐPCM\right)\)

dấu = xảy ra <=> x=y=z>=0

Bình luận (0)
Phạm Đức Minh
29 tháng 5 2018 lúc 21:30

Thanks

Bình luận (0)
Nam Thanh Long
Xem chi tiết
hoàng thanh
12 tháng 5 2015 lúc 22:30

CÔSI ta có VT<=1/xy+1/zy+1/zx. 

sau đó vẫn áp dụng bất đẳng thức cosi tùng đôi một vế phải đã cho ta sẽ đc điều phải chứng minh

Bình luận (0)
Phạm Cao Sơn
Xem chi tiết
tth_new
26 tháng 10 2019 lúc 18:34

Bài này dùng Cauchy ngược dấu:

\(\Sigma\frac{2x^2}{x+y^2}=\Sigma\frac{2x\left(x+y^2\right)-2xy^2}{x+y^2}=2\left(x+y+z\right)-2.\Sigma\frac{xy^2}{x+y^2}\)

Từ đây ta có thể quy bđt vế chứng minh: \(\Sigma\frac{xy^2}{x+y^2}\le\frac{x+y+z}{2}\)

Ta có: \(VT\le\Sigma\frac{xy^2}{2\sqrt{xy^2}}=\Sigma\frac{\sqrt{xy.y}}{2}\le\frac{xy+yz+zx+x+y+z}{4}\)

Như vậy cần chứng minh: \(xy+yz+zx\le x+y+z\)

Ta có: \(VT=\sqrt{\left(xy+yz+zx\right)^2}\le\sqrt{\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)}=\sqrt{3\left(xy+yz+zx\right)}\le x+y+z\)

Từ đây có đpcm:)

Bình luận (0)
 Khách vãng lai đã xóa
Trần Thanh Hải
Xem chi tiết
tth_new
17 tháng 1 2019 lúc 9:54

Đặt \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)

Theo giả thiết,ta có: \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{cd}=\frac{3}{abc}\)

Nhân hai vế với abc: \(a+b+c=3\) tức là \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)

Lại có:\(3=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{xyz}\)

Ta cần c/m: \(A\ge\frac{3}{2}\)

Do x,y,z > 0 áp dụng BĐT Cô si: \(x^3+y^3+z^3\ge3xyz=xy+yz+zx\)

Áp dụng BĐT Cô si: \(A\ge3\sqrt[3]{\frac{x^3y^3z^3}{\left(z+x^2\right)\left(x+y^2\right)\left(y+z^2\right)}}\)

\(=3xyz.\frac{1}{\sqrt[3]{\left(z+x^2\right)\left(x+y^2\right)\left(y+z^2\right)}}\)\(\ge3xyz.\frac{xy+yz+zx}{\left(x+y+z\right)+\left(x^2+y^2+z^2\right)}\)

\(=\frac{3\left(x^2y^2z+xy^2z^2+x^2yz^2\right)}{\left(x+y+z\right)+\left(x^2+y^2+z^2\right)}\ge\frac{3x^2y^2z^2}{\left(x+y+z\right)+\left(x^2+y^2+z^2\right)}\)

\(=\frac{3x^2y^2z^2}{\left(x+y+z\right)+\left(x+y+z\right)^2-2\left(xy+yz+zx\right)}\)

\(=\frac{3x^2y^2z^2}{\left(x+y+z\right)\left(x+y+z+1\right)-6xyz}\)

\(=\frac{3x^2y^2z^2}{xyz\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left[xyz\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+1\right]-6xyz}\)

\(=\frac{3x^2y^2z^2}{3xyz\left[3xyz+1\right]-6xyz}=\frac{3x^2y^2z^2}{9x^2y^2z^2-3xyz}\)

Đặt \(B=\frac{1}{A}=\frac{9x^2y^2z^2-3xyz}{3x^2y^2z^2}\)

Ta sẽ c/m: \(B\ge\frac{2}{3}\).Thật vậy,ta có:

\(B=\frac{1}{A}=\frac{9x^2y^2z^2-3xyz}{3x^2y^2z^2}=3-\frac{3}{3xyz}\)\(=3-\frac{1}{xyz}\ge0\)

Suy ra \(A\ge0?!?\) có gì đó sai sai.Ai biết chỉ  giùm

Bình luận (0)
Incursion_03
18 tháng 1 2019 lúc 21:29

Nghĩ mãi mới ra -.- Để ý cái số mũ 3 trên tử khó mà dùng trực tiếp Cô-si hoặc  Bunhia nên phải tách nó ra

Ta có: \(\frac{x^3}{x^2+z}=\frac{x^3+xz}{x^2+z}-\frac{xz}{x^2+z}=x-\frac{xz}{x^2+z}\)

                                                                     \(\ge x-\frac{xz}{2x\sqrt{z}}\)(Cô-si)

                                                                       \(=x-\frac{\sqrt{z}}{2}\)

                                                                        \(\ge x-\frac{z+1}{4}\)(Dùng bđt \(\sqrt{z}\le\frac{z+1}{2}\))

 Tương tự \(\frac{y^3}{y^2+z}\ge y-\frac{x+1}{4}\)

               \(\frac{z^3}{z^2+y}\ge z-\frac{y+1}{4}\)

Cộng từng vế của các bđt trên lại được

\(A\ge x+y+z-\frac{x+y+z+3}{4}=\frac{3x+3y+3z-3}{4}\)

                                                                   \(=\frac{3\left(x+y+z\right)}{4}-\frac{3}{4}\)

Từ điều kiện \(xy+yz+zx=3xyz\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)

Áp dụng bđt \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\left(a,b,c>0\right)\)được

\(3=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)

\(\Rightarrow x+y+z\ge3\)

Quay trở lại với A

\(A\ge\frac{3\left(x+y+z\right)}{4}-\frac{3}{4}\ge\frac{3.3}{4}-\frac{3}{4}=\frac{3}{2}=\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)(Do \(3=\frac{1}{x}+\frac{1}{y}=\frac{1}{z}\))

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y=z\\xy+yz+zx=3\end{cases}\Leftrightarrow x=y=z=1}\)

Vậy .............

Bình luận (0)
Incursion_03
17 tháng 1 2019 lúc 10:49

tth làm lạ vậy ? Lí giải hộ chỗ \(3=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{xyz}????\)

Bình luận (0)
Nguyễn Võ Anh Nguyên
Xem chi tiết
Thắng Nguyễn
22 tháng 7 2017 lúc 17:25

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)

\(\Rightarrow x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}=3\)

Khi đó \(\frac{1}{4x^2+y^2+z^2}=\frac{1}{3x^2+x^2+y^2+z^2}\le\frac{1}{3x^2+3}\)

Viết lại BĐT cần chứng minh như sau:

\(\frac{1}{3x^2+3}+\frac{1}{3y^2+3}+\frac{1}{3z^2+3}\le\frac{1}{2}\)

\(\Leftrightarrow\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}\le\frac{3}{2}\)

Ta có BĐT phụ \(\frac{1}{x^2+1}\le-\frac{1}{2}x+1\)

\(\Leftrightarrow-\frac{x\left(x-1\right)^2}{2\left(x^2+1\right)}\ge0\) *luôn đúng*

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\frac{1}{y^2+1}\le-\frac{1}{2}y+1;\frac{1}{z^2+1}\le-\frac{1}{2}z+1\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\le-\frac{1}{2}\left(x+y+z\right)+3=-\frac{3}{2}+3=\frac{3}{2}=VP\)

Xảy ra khi x=y=z=1

Bình luận (0)
Nguyễn Võ Anh Nguyên
22 tháng 7 2017 lúc 20:06

Cho mih hỏi bđt phụ đó là sao, có thể CM giùm mih đc hok

Bình luận (0)
zZz Cool Kid_new zZz
24 tháng 7 2020 lúc 22:28

Xài BĐT Cauchy Schwarz ta dễ có:

\(\frac{9}{4x^2+y^2+z^2}=\frac{\left(x+y+z\right)^2}{2x^2+\left(x^2+y^2\right)+\left(x^2+z^2\right)}\le\frac{x^2}{2x^2}+\frac{y^2}{x^2+y^2}+\frac{z^2}{x^2+z^2}\)

\(\Rightarrow\frac{9}{4x^2+y^2+z^2}\le\frac{1}{2}+\frac{y^2}{x^2+y^2}+\frac{z^2}{x^2+z^2}\)

Tương tự:

\(\frac{9}{4y^2+z^2+x^2}\le\frac{1}{2}+\frac{x^2}{x^2+y^2}+\frac{z^2}{y^2+z^2};\frac{9}{4z^2+x^2+y^2}\le\frac{1}{2}+\frac{x^2}{x^2+z^2}+\frac{y^2}{y^2+z^2}\)

Cộng lại ta có được:

\(9LHS\le\frac{3}{2}+3=\frac{9}{2}\Rightarrow LHS\le\frac{1}{2}\) ( ĐPCM )

Bình luận (0)
 Khách vãng lai đã xóa
Bùi Minh Anh
Xem chi tiết
nguyen ha giang
Xem chi tiết
Akai Haruma
16 tháng 8 2019 lúc 23:21

Lời giải:

Xét hiệu:

\(\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}-\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)=\frac{1}{2}\left[\left(\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\right)+\left(\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\right)-2\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)\right]\)

\(\ge \frac{1}{2}\left[\left(\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\right)+3\sqrt[3]{\frac{x^2}{y^2}.\frac{y^2}{z^2}.\frac{z^2}{x^2}}-2\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)\right]\)

\(=\frac{1}{2}\left[\left(\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\right)+3-2\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)\right]\)

\(=\frac{1}{2}\left[(\frac{x}{y}-1)^2+(\frac{y}{z}-1)^2+(\frac{z}{x}-1)^2\right]\geq 0\)

\(\Rightarrow \frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\geq \frac{x}{y}+\frac{y}{z}+\frac{z}{x}\) (đpcm)

Dấu "=" xảy ra khi $x=y=z$

Bình luận (0)
saadaa
Xem chi tiết
Mr Lazy
21 tháng 8 2016 lúc 22:10

\(\frac{x}{x+2}+\frac{y}{y+2}=2-2\left(\frac{1}{x+2}+\frac{1}{y+2}\right)\le2-2.\frac{4}{x+2+y+2}=2-\frac{8}{4-z}\)

Cần CM: \(2-\frac{8}{4-z}+\frac{z}{z+8}\le\frac{1}{3}\)

\(\Leftrightarrow\frac{8\left(z-2\right)^2}{3\left(4-z\right)\left(z+8\right)}\ge0\)

bđt trên đúng do \(4-z=\left(x+2\right)+\left(y+2\right)>0\)

Bình luận (0)
Mr Lazy
22 tháng 8 2016 lúc 7:29

Dòng kế cuối sửa lại thành \(\frac{8\left(z+2\right)^2}{3\left(4-z\right)\left(z+8\right)}\ge0\) nhé.

Bình luận (0)
Lê Gia Bảo
8 tháng 10 2019 lúc 21:31

bạn nhập tên giống 1 người IRAN đúng không ?

Bình luận (0)