§1. Bất đẳng thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thùy Dương

Cho 3 số x,y,z>0tm xyz =1.

CMR :\(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\ge \frac{x}{y}+\frac{y}{z}+\frac{z}{x} \)

Akai Haruma
25 tháng 10 2017 lúc 21:34

Lời giải:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\text{VT}=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}=\frac{\left(\frac{x}{y}\right)^2}{\frac{1}{y}}+\frac{\left(\frac{y}{z}\right)^2}{\frac{1}{z}}+\frac{\left(\frac{z}{x}\right)^2}{\frac{1}{x}}\geq \frac{\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)^2}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}\)

Giờ ta cần chỉ ra \(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\geq \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

Thật vậy, do $xyz=1$ nên tồn tại các số dương \(a,b,c\) sao cho:

\((x,y,z)=\left(\frac{a}{b};\frac{b}{c};\frac{c}{a}\right)\)

Bài toán tương đương với

\(\frac{ab}{c^2}+\frac{bc}{a^2}+\frac{ca}{b^2}\geq \frac{a}{b}+\frac{b}{c}+\frac{c}{a}\Leftrightarrow (ab)^3+(bc)^3+(ca)^3\geq a^3bc^2+b^3ca^2+c^3ab^2\)

Áp dụng BĐT Am-Gm ta có:

\((ab)^3+(ab)^3+(bc)^3\geq 3b^3ca^2\)

Thực hiện tương tự và cộng theo vế, suy ra:

\(3[(ab)^3+(bc)^3+(ca)^3]\geq 3(a^3bc^2+b^3ca^2+c^3ab^2)\)

\(\Leftrightarrow (ab)^3+(bc)^3+(ca)^3\geq a^3bc^2+b^3ca^2+c^3ab^2\)

Do đó ta có đpcm.

Dấu bằng xảy ra khi \(a=b=c\Leftrightarrow x=y=z=1\)

Nguyễn Thùy Dương
23 tháng 10 2017 lúc 21:30
KZ
23 tháng 10 2017 lúc 22:17

làm thế này chả biết có đúng ko nữa, sếp Ace có rảnh thì xem giúp em nhé ^^!

theo Bđt Cauchy, ta có:

\(x^3z+xy^3+yz^3\ge\sqrt[3]{x^4y^4z^4}=1\)

\(-x^2z-xy^2-yz^2\ge-\sqrt[3]{x^3y^3z^3}=-1\)

cộng theo vế 2 bất đẳng thức trên, ta được:

(cái này tớ muốn lách luật: không được trừ theo vế 2 bđt cùng chiều, chả biết có đc ko)

\(x^3z+xy^3+yz^3-x^2z-xy^2-yz^2\ge0\)

\(\Leftrightarrow x^2z\left(x-1\right)+xy^2\left(y-1\right)+yz^2\left(z-1\right)\ge0\)

\(\Leftrightarrow\dfrac{x\left(x-1\right)}{y}+\dfrac{y\left(y-1\right)}{z}+\dfrac{z\left(z-1\right)}{x}\ge0\)

\(\Leftrightarrow\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}-\dfrac{x}{y}-\dfrac{y}{x}-\dfrac{z}{x}\ge0\)

\(\Leftrightarrow\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}\ge\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{z}{x}\) (đpcm)


Các câu hỏi tương tự
kudo shinichi
Xem chi tiết
dbrby
Xem chi tiết
 ๖ۣۜDevil
Xem chi tiết
Nguyễn Thùy Dương
Xem chi tiết
Sengoku
Xem chi tiết
Vũ Nguyễn Linh Chi
Xem chi tiết
poppy Trang
Xem chi tiết
dbrby
Xem chi tiết
Thiều Khánh Vi
Xem chi tiết