Cho 3 số x,y,z>0tm xyz =1.
CMR :\(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\ge \frac{x}{y}+\frac{y}{z}+\frac{z}{x} \)
1.Cho a,b,c dương, a+b+c≤1.CMR: \(\frac{a^2+1}{a}+\frac{b^2+1}{b}+\frac{c^2+1}{c}\ge10\)
2.Cho a,b, c >0. CMR: \(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge\sqrt{82};x+y+z\le1\)
cho x , y , z > 0 \(x^2+y^2+z^2=1\)
CMR \(P=\frac{x}{y^2+z^2}+\frac{y}{x^2+z^2}+\frac{z^2}{x^2+y^2}\ge\frac{3\sqrt{3}}{2}\)
Cho x,y,z là các số dương. Chứng minh rằng:
\(\frac{2\sqrt{x}}{x^3+y^2}+\frac{2\sqrt{y}}{y^3+z^2}+\frac{2\sqrt{z}}{z^3+z^2}\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
Cho x, y, z là các số thực lớn hơn -1 . Chứng minh: \(\frac{1+x^2}{1+y+z^2}+\frac{1+y^2}{1+z+x^2}+\frac{1+z^2}{1+x+y^2}\ge2\)
cho x,y,z >0 thỏa mãn \(x+y+z=\frac{3}{2}\)
Tìm GTNN của \(\frac{\sqrt{x^2+xy+y^2}}{4yz+1}+\frac{\sqrt{y^2+yz+z^2}}{4xz+1}+\frac{\sqrt{z^2+xz+x^2}}{4xy+1}\)
Cho \(x,y,z\) là các số thực dương. CMR: \(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\ge2+\frac{2\left(x+y+z\right)}{3\sqrt{xyz}}\)
giúp mk với : cho x,y,z >0 và x3+y3+z3=0
chứng minh rằng \(\frac{x^2}{\sqrt{1-x^2}}+\frac{y^2}{\sqrt{1-y^2}}+\frac{z^2}{\sqrt{1-z^2}}\)>= 2cho 3 số thực dương z;y;z thỏa mãn x+y+z<hoạc = 3/2
tìm GTNN của biểu thức :
\(P=\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\)