cho 3 số thực dương z;y;z thỏa mãn x+y+z<hoạc = 3/2
tìm GTNN của biểu thức :
\(P=\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\)
Cho 3 số thực dương x,y,z thỏa mãn x\(\ge\)z. Tìm giá trị nhỏ nhất của biểu thức
P= \(\frac{xz}{y^2+yz}+\frac{y^2}{xz+yz}+\frac{x+2z}{x+z}\)
Cho ba số thực dương x,y,z thỏa mãn x \(\ge\) z. Tìm giá trị nhỏ nhất của biểu thức
\(P=\frac{xz}{y^2+yz}+\frac{y^2}{xz+yz}+\frac{x+2z}{x+z}\)
Cho các số x,y,z>0 tm xy+yz+zx\(\ge x+y+z\)
\(\frac{x^2}{\sqrt{x^2+8}}+\frac{y^2}{\sqrt{y^2+8}}+\frac{z^2}{\sqrt{z^2+8}}\)
cho x,y,z > 0 . Cmr: \(\frac{x^4}{y^2\left(x+z\right)}+\frac{y^4}{z^2\left(x+y\right)}+\frac{z^4}{x^2\left(y+z\right)}\ge\frac{x+y+z}{2}\)
Cho các số thực dương x, y, z thỏa mãn x2 + y2 + z2 = 3. CMR \(\dfrac{x}{\sqrt[3]{yz}}+\dfrac{y}{\sqrt[3]{xz}}+\dfrac{z}{\sqrt[3]{xy}}\ge xy+yz+zx\)
Cho 3 số x,y,z>0tm xyz =1.
CMR :\(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\ge \frac{x}{y}+\frac{y}{z}+\frac{z}{x} \)
cho x,y,z >0 thỏa mãn \(x+y+z=\frac{3}{2}\)
Tìm GTNN của \(\frac{\sqrt{x^2+xy+y^2}}{4yz+1}+\frac{\sqrt{y^2+yz+z^2}}{4xz+1}+\frac{\sqrt{z^2+xz+x^2}}{4xy+1}\)