§1. Bất đẳng thức

Đạt Trần Tiến

Cho các số x,y,z>0 tm xy+yz+zx\(\ge x+y+z\)

\(\frac{x^2}{\sqrt{x^2+8}}+\frac{y^2}{\sqrt{y^2+8}}+\frac{z^2}{\sqrt{z^2+8}}\)

 Mashiro Shiina
2 tháng 6 2018 lúc 1:22

min hay max bạn

Bình luận (0)
Nguyen
6 tháng 10 2019 lúc 16:04

Mk nghĩ là x3,y3,z3.

Áp dụng BĐT AM-GM:

\(\Sigma_{cyc}\left(\frac{x^2}{\sqrt{x^3+8}}\right)=\Sigma_{cyc}\left(\frac{x^2}{\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}}\right)\)\(\ge2\Sigma_{cyc}\left(\frac{x^2}{x^2-x+6}\right)\)

Áp dụng BĐT Cauchy-Schwart:

\(2\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\)\(=\frac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2-2\left(xy+yz+zx\right)-\left(x+y+z\right)+18}\)\(\ge\frac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2-2\left(x+y+z\right)-\left(x+y+z\right)+18}\)

gt\(\Leftrightarrow3\left(x+y+z\right)\le3\left(xy+yz+zx\right)\le\left(x+y+z\right)^2\)

\(\Leftrightarrow\left(x+y+z\right)^2-3\left(x+y+z\right)\ge0\)

\(\Rightarrow\left[{}\begin{matrix}x+y+z\le0\\x+y+z\ge3\end{matrix}\right.\)

Đặt t=x+y+z\(\left(t\ge3\right)\)

Cần c/m:\(\frac{2t^2}{t^2-3t+18}\ge1\)

Có :\(t^2-3t+18>0\)

\(\Rightarrow2t^2\ge t^2-3t+18\)

\(\Leftrightarrow t^2+3t-18\ge3^2+3.3-18=0\)(Đúng)

Vậy min =1

Dấu = xra khi x=y=z=1.

#Walker

Kiểm tra giùm em đúng ko ạ Akai Haruma

Bình luận (0)

Các câu hỏi tương tự
dbrby
Xem chi tiết
Eren
Xem chi tiết
Nguyễn Thùy Dương
Xem chi tiết
kudo shinichi
Xem chi tiết
poppy Trang
Xem chi tiết
Thiều Khánh Vi
Xem chi tiết
Cuộc Sống Thầm Lặng
Xem chi tiết
Văn Quyết
Xem chi tiết
Anhh Thưư
Xem chi tiết