\(VT=\sum\frac{2}{x^2+y^2}=\sum\frac{x^2+y^2+z^2}{x^2+y^2}=\sum\left(1+\frac{z^2}{x^2+y^2}\right)\ge\sum\left(1+\frac{z^2}{2xy}\right)=3+\frac{x^3+y^3+z^3}{2xyz}\)
Vậy đẳng thức đã được chứng minh . Dấu "=" xảy ra khi \(x=y=z=\sqrt{\frac{3}{2}}\)
\(VT=\sum\frac{2}{x^2+y^2}=\sum\frac{x^2+y^2+z^2}{x^2+y^2}=\sum\left(1+\frac{z^2}{x^2+y^2}\right)\ge\sum\left(1+\frac{z^2}{2xy}\right)=3+\frac{x^3+y^3+z^3}{2xyz}\)
Vậy đẳng thức đã được chứng minh . Dấu "=" xảy ra khi \(x=y=z=\sqrt{\frac{3}{2}}\)
cho x , y , z > 0 \(x^2+y^2+z^2=1\)
CMR \(P=\frac{x}{y^2+z^2}+\frac{y}{x^2+z^2}+\frac{z^2}{x^2+y^2}\ge\frac{3\sqrt{3}}{2}\)
Cho x,y,z là các số dương. Chứng minh rằng:
\(\frac{2\sqrt{x}}{x^3+y^2}+\frac{2\sqrt{y}}{y^3+z^2}+\frac{2\sqrt{z}}{z^3+z^2}\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
Cho 3 số x,y,z>0tm xyz =1.
CMR :\(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\ge \frac{x}{y}+\frac{y}{z}+\frac{z}{x} \)
cho x,y,z >0 thỏa mãn \(x+y+z=\frac{3}{2}\)
Tìm GTNN của \(\frac{\sqrt{x^2+xy+y^2}}{4yz+1}+\frac{\sqrt{y^2+yz+z^2}}{4xz+1}+\frac{\sqrt{z^2+xz+x^2}}{4xy+1}\)
cho x,y,z > 0 . Cmr: \(\frac{x^4}{y^2\left(x+z\right)}+\frac{y^4}{z^2\left(x+y\right)}+\frac{z^4}{x^2\left(y+z\right)}\ge\frac{x+y+z}{2}\)
Cho x,y,z >0. Chứng minh \(\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}\) ≥ x2 + y2 + z2
cho 3 số thực dương z;y;z thỏa mãn x+y+z<hoạc = 3/2
tìm GTNN của biểu thức :
\(P=\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\)
giúp mk với : cho x,y,z >0 và x3+y3+z3=0
chứng minh rằng \(\frac{x^2}{\sqrt{1-x^2}}+\frac{y^2}{\sqrt{1-y^2}}+\frac{z^2}{\sqrt{1-z^2}}\)>= 2Cho các số thực dương x,,z tm \(x^2+y^2+z^2=12 \) CMR:
\(\frac{x+y}{4+yz}+\frac{y+z}{4+xz}+\frac{x+z}{4+xy} \ge\frac{3}{2} \)