Những câu hỏi liên quan
gta dat
Xem chi tiết
Edogawa Conan
16 tháng 10 2020 lúc 5:25

Từ a3 + b3 + c3 = 3abc

<=> (a + b)(a2 - ab + b2) + c3 - 3abc = 0

<=> (a + b)3 + c3 - 3ab(a + b) - 3abc = 0

<=> (a + b + c)(a2 + 2ab + b2 - ac - bc + c2) - 3ab(a + b + c) = 0

<=> (a + b + c)(a2 + b2 + c2 - ab - ac - bc) = 0

<=> \(\orbr{\begin{cases}a+b+c=0\left(loại\right)\\a^2+b^2+c^2-ab-ac-bc=0\end{cases}}\)

<=> 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc = 0

<=> (a - b)2 + (b - c)2 + (c - a)2 = 0

<=> a = b = c

=> tam giác đó là tam giác đều

b) Áp dụng bđt \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

CM đúng (tự cm tđ)

Ta có: \(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2xz}=\frac{9}{\left(x+y+z\right)^2}=9\)(vì x + y + z = 1)

Dấu "=" xảy ra <=> x = y = z = 1/3

Bình luận (0)
 Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
16 tháng 10 2020 lúc 5:27

a) Vì a, b, c là độ dài ba cạnh của một tam giác => a, b, c > 0

Ta có : a3 + b3 + c3 = 3abc

<=> a3 + b3 + c3 - 3abc = 0

<=> ( a + b )3 - 3ab( a + b ) + c3 - 3abc = 0

<=> [ ( a + b )3 + c3 ] - [ 3ab( a + b ) + 3abc ] = 0

<=> ( a + b + c )( a2 + b2 + c2 + 2ab - ac - bc ) - 3ab( a + b + c ) = 0

<=> ( a + b + c )( a2 + b2 + c2 - ab - ac - bc ) = 0

<=> \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-ac-bc=0\end{cases}}\)

Dễ thấy không thể xảy ra trường hợp a + b + c = 0 vì a, b, c > 0 

Xét TH còn lại ta có :

a2 + b2 + c2 - ab - ac - bc = 0

<=> 2(a2 + b2 + c2 - ab - ac - bc) = 2.0

<=> 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc = 0

<=> ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( c2 - 2ac + a2 ) = 0

<=> ( a - b )2 + ( b - c )2 + ( c - a )2 = 0 (*)

Ta có : \(\hept{\begin{cases}\left(a-b\right)^2\\\left(b-c\right)^2\\\left(c-a\right)^2\end{cases}}\ge0\forall a,b,c\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Leftrightarrow a=b=c\)

=> Tam giác đó là tam giác đều ( đpcm )

Bình luận (0)
 Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
16 tháng 10 2020 lúc 5:33

b) Áp dụng bđt Cauchy-Schwarz dạng Engel ta có :

\(VT\ge\frac{\left(1+1+1\right)^2}{x^2+2yz+y^2+2xz+z^2+2xy}=\frac{9}{\left(x+y+z\right)^2}=\frac{9}{1}=9\)( do GT x + y + z = 1 )

=> đpcm

Dấu "=" xảy ra <=> x = y = z = 1/3

Bình luận (0)
 Khách vãng lai đã xóa
tuan kiet le
Xem chi tiết
Do You Sky
Xem chi tiết
Hoàng Thu Trang
14 tháng 3 2017 lúc 16:57

do (a-b)2\(\ge\)0 ;(b-c)2\(\ge\)0

\(\Rightarrow\)(a-b)2+(b-c)2\(\ge\)0

mà (a-b)2+(b-c)2=0 (đề bài cho)

\(\Rightarrow\)(a-b)2=0;(b-c)2=0

\(\Rightarrow\)a-b=b-c=0

\(\Rightarrow\)a=b=c

Vậy tam giác ABC đều

Bình luận (3)
Hoàng Liên
Xem chi tiết
Võ Thị Quỳnh Giang
30 tháng 10 2017 lúc 15:51

 ta có: \(a+b+c=2p\Rightarrow2p-a-b-c=0\)

mặt khác ta có: \(\frac{p}{p-a}+\frac{p}{p-b}+\frac{p}{p-c}=p\left(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\right)\)

                                                              \(=\left(p-a+p-b+p-c\right)\left(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\right)\)       (*)

                                                             ( vì \(2p-a-b-c=0\))

                             Đặt : \(p-a=x\left(x>0\right);p-b=y\left(y>0\right);p-c=z\left(z>0\right)\)      

                   =>(*)<=>\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)               

mà \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)                  (tự chứng minh)

nên \(\frac{p}{p-a}+\frac{p}{p-b}+\frac{p}{p-c}\ge9\)                      =>đpcm

                                                                               

Bình luận (0)
pham thi thao anh
Xem chi tiết
Akai Haruma
10 tháng 1 2017 lúc 18:34

Lời giải:

Áp dụng bất đẳng thức Schur cho $a,b,c$ là ba cạnh của tam giác:

\(abc\geq (a+b-c)(b+c-a)(c+a-b)=(1-2a)(2-2b)(1-2c)\)

\(\Leftrightarrow 9abc\geq 4(ab+bc+ac)-1\)

Do đó: \(A=a^2+b^2+c^2+4abc\geq a^2+b^2+c^2+\frac{16(ab+bc+ac)}{9}-\frac{4}{9}\)

Ta có:

\(a^2+b^2+c^2+2(ab+bc+ac)=(a+b+c)^2=1\)

Áp dụng BĐT AM-GM: \(ab+bc+ac\leq \frac{(a+b+c)^2}{3}=\frac{1}{3}\Rightarrow \frac{-2(ab+bc+ac)}{9}\geq \frac{-2}{27}\)

Cộng theo vế: \(a^2+b^2+c^2+\frac{16(ab+bc+ac)}{9}\geq \frac{29}{27}\Rightarrow A\geq \frac{29}{27}-\frac{4}{9}=\frac{13}{27}\)

Do đó ta có đpcm

Dấu $=$ xảy ra khi $3a=3b=3c=1$ hay tam giác $ABC$ là tam giác đều.

Bình luận (0)
gta dat
Xem chi tiết
Phạm Hoàng Bảo Ngọc
14 tháng 9 2020 lúc 15:59

hỏi j khó vậy

Bình luận (0)
 Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
14 tháng 9 2020 lúc 16:01

Sửa VP = \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Vì a, b, c là độ dài ba cạnh của một tam giác

=> a, b, c > 0

Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)( cái này bạn tự chứng minh nhé ) ta có :

\(\frac{1}{a+b-c}+\frac{1}{a+c-b}\ge\frac{4}{a+b-c+a+c-b}=\frac{4}{2a}=\frac{2}{a}\)

TT : \(\frac{1}{a+c-b}+\frac{1}{b+c-a}\ge\frac{4}{a+c-b+b+c-a}=\frac{4}{2c}=\frac{2}{c}\)

\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)

Cộng theo vế ta có :

\(\frac{1}{a+b-c}+\frac{1}{a+c-b}+\frac{1}{a+c-b}+\frac{1}{b+c-a}+\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\)

\(\Leftrightarrow2\left(\frac{1}{a+b-c}+\frac{1}{a+c-b}+\frac{1}{b+c-a}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Leftrightarrow\frac{1}{a+b-c}+\frac{1}{a+c-b}+\frac{1}{b+c-a}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)( đpcm )

Đẳng thức xảy ra ⇔ a = b = c

Bình luận (0)
 Khách vãng lai đã xóa
Phan Nghĩa
14 tháng 9 2020 lúc 19:23

Sử dụng liên tiếp 2 lần bất đẳng thức AM-GM ta có :

\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge2\sqrt[2]{\frac{1}{\left(a+b-c\right)\left(b+c-a\right)}}\)

\(=\frac{2}{\sqrt{\left(a+b-c\right)\left(b+c-a\right)}}\ge\frac{2}{\frac{a+b-c+b+c-a}{2}}=\frac{2}{\frac{2b}{2}}=\frac{2}{b}\)

Bằng phương pháp chứng minh tương tự ta thu được : 

\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{2}{c};\frac{1}{c+a-b}+\frac{1}{a+b-c}\ge\frac{2}{a}\)

Cộng theo vế ba bất đẳng thức trên ta được : \(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{b+c-a}+\frac{1}{c+a-b}+\frac{1}{c+a-b}+\frac{1}{a+b-c}\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\)

\(< =>2\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(< =>\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)

Vậy ta có điều phải chứng minh

Bình luận (0)
 Khách vãng lai đã xóa
bui thi nhat linh
Xem chi tiết
Thế Vinh Nguyễn
Xem chi tiết
Lê Thu Dương
19 tháng 5 2019 lúc 22:04
https://i.imgur.com/wVfGdQT.jpg
Bình luận (0)
bui minh ngoc
Xem chi tiết