n^3-13^n luôn chia hết cho 6 với mọi n thuộc z
Chứng minh rằng : n.(n+5) - (n-3) (n+2) luôn luôn chia hết cho 6 với mọi x thuộc Z
\(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\)
\(=n^2+5n-n^2-2n+3n+6\)
\(=6n+6\)
\(=6\left(n+1\right)\) chia hết cho 6
=>\(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\) chia hết cho 6
a, Chứng minh rằng với mọi m thuộc Z ta luôn có m3 - m chia hết cho 6 .
b, Chứng minh rằng với mọi n thuộc Z ta luôn có ( 2n - 1 ) - 2n + 1 chia hết cho 8
a) Ta có: m^3-m = m(m^2-1^2) = m.(m+1)(m-1) là tích của 3 số nguyên liên tiếp
=> m(m+1)(m-1) chia hết cho 3 và 2
Mà (3,2) = 1
=> m(m+1)(m-1) chia hết cho 6
=> m^3 - m chia hết cho 6 V m thuộc Z
b) Ta có: (2n-1)-2n+1 = 2n-1-2n+1 = 0-1+1 = 0 luôn chia hết cho 8
=> (2n-1)-2n+1 luôn chia hết cho 8 V n thuộc Z
Tick nha pham thuy trang
a, m3 - m = m( m2 - 12) = m(m - 1 ) ( m + 1) => 3 số nguyên liên tiếp : hết cho 6
mk chỉ biết có thế thôi
công thanh sai rồi số nguyên chứ đâu phải số tự nhiên
Chứng minh rằng: n2.(n+1)+2n.(n+1) luôn chia hết cho 6 với mọi n thuộc Z
n^2.(n+1) + 2n.(n+1)
=(n+1). (n^2 + 2n)
= (n+1).n.(n+2) chia hết cho 6 (tích 3 số tự nhiên liên tiếp chia hết cho 6)
n2.(n + 1) + 2n.(n + 1) = (n2 + 2n)(n + 1) = n(n + 1)(n + 2)
Vì n(n + )(n + 2) là tích của 3 số nguyên liên tiếp nên có 1 số chia hết cho 2, 1 số chia hết cho 3.
=> Tích n(n + 1)(n + 2) chia hết cho 2 và 3.
Mà (2,3) = 1
=> n(n + 1)(n + 2) chia hết cho 6
=> n2.(n+1)+2n.(n+1) chia hết cho 6
chứng minh rằng:
a) (n+6)^2-(n-6)^2 chia hết cho 24 với mọi n thuộc Z
b) n^2+4n+3 chia hết cho 8 với mọi n thuộc Z
c) (n+3)^2-(n-1)^2 chia hết cho 8 với mọi
giải chi tiết,cảm ơn!
a) \(\left(n+6\right)^2-\left(n-6\right)^2\)
\(=\left[\left(n+6\right)-\left(n-6\right)\right]\left[\left(n+6\right)+\left(n-6\right)\right]\)
\(=\left(n+6-n+6\right)\left(n+6+n-6\right)\)
\(=12.2n\)
\(=24n\)
Vì 24n chia hết cho 24 với mọi n
=> (n + 6)2 - (n - 6)2 chia hết cho 24 với mọi n thuộc Z (Đpcm)
b) P/s: Bài này cậu thiếu điều kiện n lẻ nên mình thêm vào mới giải được nha.
\(n^2+4n+3\)
\(=n^2+n+3n+3\)
\(=n\left(n+1\right)+3\left(n+1\right)\)
\(=\left(n+3\right)\left(n+1\right)\)
Vì n là số lẻ nên n = 2k + 1 ( k thuộc Z )
Thay n = 2k + 1 vào ta được
\(\left(n+3\right)\left(n+1\right)\)
\(=\left(2k+1+3\right)\left(2k+1+1\right)\)
\(=\left(2k+4\right)\left(2k+2\right)\)
\(=2\left(k+2\right)2\left(k+1\right)\)
\(=4\left(k+2\right)\left(k+1\right)\)
Vì (k + 2)(k + 1) là tích của hai số liên tiếp
=> (k + 2)(k + 1) chia hết cho 2
=> 4(k + 2)(k + 1) chia hết cho 8
=> n2 + 4n + 3 chia hết cho 8 với mọi số nguyên n lẻ ( Đpcm )
c) \(\left(n+3\right)^2-\left(n-1\right)^2\)
\(=\left[\left(n+3\right)-\left(n-1\right)\right]\left[\left(n+3\right)+\left(n-1\right)\right]\)
\(=\left(n+3-n+1\right)\left(n+3+n-1\right)\)
\(=4\left(2n+2\right)\)
\(=4.2\left(n+1\right)\)
\(=8\left(n+1\right)\)
Vì 8(n + 1) chia hết cho 8 với mọi n
=> (n + 3)2 - (n - 1)2 chia hết cho 8 với mọi n ( Đpcm )
Chứng minh rằng:
n2.(n+1)+2n.(n+1) luôn chia hết cho 6 với mọi n thuộc Z
Ch/m: n2 ( n+1) + 2n( n+1 ) luôn chia hết cho 6 với mọi giá trị của n thuộc Z
\(n^2\left(n+1\right)+2n\left(n+1\right)=\left(n+1\right)\left(n^2+2n\right)=\left(n+1\right)n\left(n+2\right)=n\left(n+1\right)\left(n+2\right)\)
Vì n(n+1)(n+2) là tích 3 số nguyên liên tiếp nên chia hết cho 2 và 3
Mà (2;3)=1
=>n(n+1)(n+2) chia hết cho 6
=>đpcm
=(n2+2n)(n+1)
=n(n+1)(n+2) chia hết cho 6 vì là 3 số nguyên liên tiếp
Cho 2 số a và b biết a chia 3 dư 1, b chia 3 dư 2
Hỏi ab chia 3 dư mấy?
CMR: n^3 - n chia hết cho 6 với mọi n thuộc Z
n^5 - n chia hết cho 10 với mọi n thuộc Z
n^3-n=n(n-1)(n+1) là tích 3 số nguyên liên tiếp
=>tồn tại 1 bội của 3 =>n(n-1)(n+1) chia hết cho 3
=>tồn tại ít nhất 1 bội của 2 =>n(n-1)(n+1) chia hết cho 2
mà (2;3)=1=>n(n-1)(n+1)chia hết cho 6
hay n^3-n chia hết cho 6
n^5-n=n(n-1)(n+1)(n^2+1)
=n(n-1)(n+1)(n^2-4+5)
=n(n-1)(n+1)(n-2)(n+2)+5(n-1)n(n+1)
n(n-1)(n+1)(n-2)(n+2) là tích 5 số nguyên liên tiếp
=>tồn tại 1 bội của 5 =>n(n-1)(n+1) chia hết cho 5
=>tồn tại ít nhất2 bội của 2 =>n(n-1)(n+1) chia hết cho 2
mà (2;5)=1=>n(n-1)(n+1)(n-2)(n+2) chia hết cho 10
n(n-1)(n+1) là tích 3 số nguyên liên tiếp
=>tồn tại ít nhất 1 bội của 2 =>n(n-1)(n+1) chia hết cho 2
=>5n(n-1)(n+1) chia hết cho 10
=>n(n-1)(n+1)(n-2)(n+2)+5(n-1)n(n+1)chia hết cho 10
hay n^5-n chia hết cho 10
CMR biểu thức A= n(2n-3)-2n(n+1)luôn chia hết cho 5 với mọi n thuộc z
A= n(2n-3)-2n(n+1)
A= 2n2-3n-2n2-2n
A=-5n
vì -5 chia hết cho 5
Nên -5n chia hết cho 5
hay A chia hết cho 5 với n thuộc z
. Bài 1:Tìm x
a; x.(x-4)+x-4=0
b; x.(x-4)=2x-8
c; (2x+3).(x-1)+(2x-3).(1-x)=0
d; (x+1).(6x^2+2x)+(x-1).(6x^2+2x)=0
. Bài 2:Tính giá trị biểu thức
a; A=x.(2y-z)-2y.(z-2y) với x=2,y=1/2,z= -1
b; B=x.(y-x)+y.(x-y) với x=13,y=3
c; C=x.(x+y)-5x-5y với x=33/5,y=12/5
. Bài 3
a; CMR: n^2.(n+1)+2n.(n+1) chia hết cho 6 với mọi n thuộc Z
b; CMR: 24^n+1 - 24^n chia hết cho 23 với mọi n thuộc N
c; CMR: (2^n-1)^2 - 2^n+1 chia hết cho 8 với mọi n thuộc Z
. Bài 4: CMR: m^3 - m chia hết cho 6 với mọi m thuộc Z
bn ... ơi...mik ...bỏ...cuộc ...hu...hu
. Huhu T^T mong sẽ có ai đó giúp mình "((