Tìm m để parabol y = x2 cát đường thẳng y = (2m-3)x + m2 - 3m tại 2 điểm phân biệt có hoành độ a, b thỏa mãn 1 < a < b < 6.
Cho hàm số y= 2x^2 có đồ thị là parabol (P)
1. Tìm tọa độ giao điểm của parabol (P) với đường thẳng y= 3x-1
2. Đường thẳng y= 6x-4 cắt parabol (P) tại A và B. Tính SAOB
3. Trên parabol lấy 2 điểm A và B có hoành độ là -1 và 2. Viết PT đường thẳng AB
4. Tìm m để đường thẳng y= x+m tiếp xúc với parabol
5. Chứng minh đường thẳng y= mx-2m-5 cắt parabol tại 2 điểm phân biệt với mọi m
6. Tìm m để đường thẳng mx-2m+5 cắt parabol tại 2 điểm có hoành độ x1, x2 thỏa mãn x1^2 + x2^2 = 4
Trong mặt phẳng toạ độ Oxy , cho parabol (P): y= x2 và đường thẳng (d):y= (2m-3)x-m2+3m. a) Chứng minh đường thẳng(d) luôn cắt (P)tại hai điểm phân biệt có hoành độ là x1,x2. b) Tìm tất cả các giá trị nguyên của m để trị tuyệt đối x1+ trị tuyệt đối x2 = 3
a: PTHĐGĐ là;
x^2-(2m-3)x+m^2-3m=0
Δ=4m^2-12m+9-4m^2+12m=9>0
=>(P) luôn cắt (d) tại hai điểm pb
b: |x1|+|x2|=3
=>x1^2+x2^2+2|x1x2|=9
=>(2m-3)^2-2(m^2-3m)+2|m^2-3m|=9
TH1: m>=3 hoặc m<=0
=>(2m-3)^2=9
=>m=3(nhận) hoặc m=0(nhận)
Th2: 0<m<3
=>4m^2-12m+9-4(m^2-3m)=9
=>4m^2-12m-4m^2+12m=0
=>0m=0(luôn đúng)
Trong mặt phẳng tọa độ Oxy, cho Parabol(P): y=x2 và đường thẳng (d): y=2(m+1)x-m2-4 (1), (m là tham số)
a) Tìm m để đường thẳng (d) đi qua A(0;-5)
b) Với giá trị nào của m để đường thẳng (d) cắt parabol (P) tại 2 điểm phân biệt có hoành độ x1; x2 thỏa mãn điều kiện: (2x1-1)(x22-2mx2+m2+3)=21
a: Thay x=0 và y=-5 vào (d), ta được:
2(m+1)*0-m^2-4=-5
=>m^2+4=5
=>m=1 hoặc m=-1
b:
PTHĐGĐ là;
x^2-2(m+1)x+m^2+4=0
Δ=(2m+2)^2-4(m^2+4)
=4m^2+8m+4-4m^2-16=8m-12
Để PT có hai nghiệm phân biệt thì 8m-12>0
=>m>3/2
x1+x2=2m+2; x1x2=m^2+4
(2x1-1)(x2^2-2m*x2+m^2+3)=21
=>(2x1-1)[x2^2-x2(2m+2-2)+m^2+4-1]=21
=>(2x1-1)[x2^2+2x2-x2(x1+x2)+x1x2-1]=21
=>(2x1-1)(x2^2+2x2-x1x2-x2^2+x1x2-1]=21
=>(2x1-1)(2x2-1)=21
=>4x1x2-2(x1+x2)+1=21
=>4(m^2+4)-2(2m+2)+1=21
=>4m^2+16-4m-4-20=0
=>4m^2-4m-8=0
=>(m-2)(m+1)=0
=>m=2(nhận) hoặc m=-1(loại)
Bài 1: Cho parabol (P) : y = x2 và đường thẳng (d) : y= 3mx + 1 - m2 ( m là tham số)
a) TÌm m để (d) đường thẳng đi qua A( 1; -9)
b) Tìm m để (d) m cắt (P) tại 2 điểm phân biệt có hoành độ x1; x2 thõa mãn x1 + x2 = 2x1x2
Bài 1:
a) Để (d) đi qua A(1;-9) thì
Thay x=1 và y=-9 vào (d), ta được:
\(3m\cdot1+1-m^2=-9\)
\(\Leftrightarrow-m^2+3m+1+9=0\)
\(\Leftrightarrow m^2-3m-10=0\)
\(\Leftrightarrow m^2-5m+2m-10=0\)
\(\Leftrightarrow m\left(m-5\right)+2\left(m-5\right)=0\)
\(\Leftrightarrow\left(m-5\right)\left(m+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m-5=0\\m+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=5\\m=-2\end{matrix}\right.\)
Vậy: Để (d) đi qua A(1;-9) thì \(m\in\left\{5;-2\right\}\)
a) lập bảng biến thiên và vẽ đồ thị hàm số y = x\(^2\)+3x+2
b) tìm m để đường thẳng y = -x+m cắt (P) tại 2 điểm phân biệt có hoành độ dương
c) tìm m để đường thẳng y = -2x+3m cắt (P) tại 2 điểm phân biệt có hoành độ x1, x2 thỏa mãn x\(_1\)= 3x\(_2\)
Trong mặt phẳng tọa độ oxy, đường thẳng (d) y=2x-m+3 và Parabol (P) y=x2.
a) Tìm m để đường thẳng (d) đi qua A(1;0)
b) Tìm m để dường thẳng (d) và Parabol (P) cắt nhau tại hai điểm phân biệt có hoành độ lần lượt là x1, x2 thỏa mãn x12 -2x2 +x1.x2 = -12
Lời giải:
a. Để $(d)$ đi qua $A(1;0)$ thì:
$y_A=2x_A-m+3$
$\Leftrightarrow 0=2.1-m+3=5-m$
$\Leftrightarrow m=5$
b.
PT hoành độ giao điểm:
$x^2-(2x-m+3)=0$
$\Leftrightarrow x^2-2x+m-3=0(*)$
Để $(P), (d)$ cắt nhau tại 2 điểm pb thì $(*)$ phải có 2 nghiệm pb $x_1,x_2$
Điều này xảy ra khi:
$\Delta'=1-(m-3)>0\Leftrightarrow 4-m>0\Leftrightarrow m< 4$
Áp dụng định lý Viet: $x_1+x_2=2$ và $x_1x_2=m-3$
Khi đó:
$x_1^2-2x_2+x_1x_2=-12$
$\Leftrightarrow x_1^2-(x_1+x_2)x_2+x_1x_2=-12$
$\Leftrightarrow x_1^2-x_2^2=-12$
$\Leftrightarrow (x_1-x_2)(x_1+x_2)=-12$
$\Leftrightarrow x_1-x_2=-6$
$\Rightarrow x_1=-2; x_2=4$
$m-3=x_1x_2=(-2).4=-8$
$\Leftrightarrow m=-5$ (tm)
Cho phương trình d: y = (m + 1)x - m ( m là tham số) và Parabol (P): y = 1/2 x2
1) Tìm m để đường thẳng d cắt trục hoành tại điểm có hoành độ bằng 2.
2) Tìm m để đường thẳng d cắt (P) tại 2 điểm phân biệt có hoành độ x1, x2 thỏa mãn căn x1 + căn x2 = căn 2
Cho parabol (P): y = -x2 và đường thẳng (d): y = (2 - m).x + m - 3. Tìm m để (d) cắt (P) tại 2 điểm phân biệt có hoành độ x1, x2 thỏa mãn |x1| + x22 = 2
trong mặt phẳng toạ độ giao điểm của đường thẳng (d) y = (2m+5)x+2m+6 và parabol (P) y = x^2. tìm giá trị của m để (d) cắt (P) tại 2 điểm phân biệt có hoành độ thoả mãn |x1|+|x2|=7
\(\left(d\right)\) cắt \(\left(P\right)\) tại 2 điểm phân biệt \(\Leftrightarrow\Delta>0\)
\(\Leftrightarrow\left(2m+5\right)^2+4\left(2m+6\right)>0\)
\(\Leftrightarrow4m^2+20m+25+8m+24>0\)
\(\Leftrightarrow\left(2m+7\right)^2>0\) (luôn đúng)
Viet \(\left\{{}\begin{matrix}x_1+x_2=2m+5\\x_1x_2=-2m-6\end{matrix}\right.\)
\(\left|x_1\right|+\left|x_2\right|=7\)\(\Leftrightarrow\left(x_1+x_2\right)^2=7^2\)
\(\Leftrightarrow\left(2m+5\right)^2=49\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-6\\m=1\end{matrix}\right.\)
-Chúc bạn học tốt-
cho đường thẳng (d) y=6x-m+3 (m là tham số) và parabol (p) y=x^2 tìm giá trị của m để đường thẳng (d) cắt parabol (p) tại hai điểm phân biệt có hoành độ x1 x2 thỏa mãn (x1-1)(x2^2-5x2+m-4)=2
PTHĐGĐ là;
x^2-6x+m-3=0
Δ=(-6)^2-4(m-3)=36-4m+12=-4m+48
Để PT có hai nghiệm phân biệt thì -4m+48>0
=>m<12
(x1-1)(x2^2-x2(x1+x2-1)+x1x2-1)=2
=>(x1-1)(-x1x2+x2+x1x2-1)=2
=>x1x2-(x1+x2)+1=2
=>m-3-6+1=2
=>m-8=2
=>m=10