CMR\(\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}>4\)
CMR \(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{5}+\sqrt{6}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}>4\)
Trước hết , ta cần chứng minh \(\frac{1}{\sqrt{n}+\sqrt{n+1}}=\sqrt{n+1}-\sqrt{n}\)(*) (Bạn tự chứng minh)
Đặt \(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{5}+\sqrt{6}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}\)
\(\Rightarrow2A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{5}+\sqrt{6}}+\frac{1}{\sqrt{5}+\sqrt{6}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{79}+\sqrt{80}}\)
\(>\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{80}+\sqrt{81}}\)
Áp dụng (*) :\(\Rightarrow2A>\left(\sqrt{2}-\sqrt{1}\right)+\left(\sqrt{3}-\sqrt{2}\right)+\left(\sqrt{4}-\sqrt{3}\right)+\left(\sqrt{5}-\sqrt{4}\right)+...+\left(\sqrt{80}-\sqrt{79}\right)+\left(\sqrt{81}-\sqrt{80}\right)\)
\(\Rightarrow2A>\sqrt{81}-1=8\Rightarrow A>4\)(đpcm)
CMR:
\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{5}+\sqrt{6}}+....+\frac{1}{\sqrt{79}+\sqrt{80}}>4\)
\(\frac{1}{\sqrt{1}+\sqrt{2}}+....\frac{1}{\sqrt{79}+\sqrt{80}}>\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\) (40 số)
................................................................\(>\frac{40}{10}=4\)
=>đpcm
hc tốt
ko chắc lắm :)
CMR: \(\frac{1}{\sqrt{1}+\sqrt{2}}\) + \(\frac{1}{\sqrt{3}+\sqrt{4}}\)+ \(\frac{1}{\sqrt{5}+\sqrt{6}}\)+ ....+\(\frac{1}{\sqrt{79}+\sqrt{80}}\)>4
Ta có:
\(\frac{1}{\sqrt{1}+\sqrt{2}}>\frac{1}{\sqrt{2}+\sqrt{3}};\frac{1}{\sqrt{3}+\sqrt{4}}>\frac{1}{\sqrt{4}+\sqrt{5}};...;\frac{1}{\sqrt{79}+\sqrt{80}}>\frac{1}{\sqrt{80}+\sqrt{81}}\)
Do đó \(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{5}+\sqrt{6}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}\)
\(=\frac{1}{2}\left(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{79}+\sqrt{80}}\right)\)\(>\frac{1}{2}\left(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{80}+\sqrt{81}}\right)\)
\(=\frac{1}{2}\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{80}-\sqrt{79}+\sqrt{81}-\sqrt{80}\right)\)
\(=\frac{1}{2}\left(-\sqrt{1}+\sqrt{81}\right)=\frac{1}{2}\left(-1+9\right)=4\)
Suy ra đpcm.
Đặt \(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{80}+\sqrt{79}}\)
Suy ra
\(2A=2\left(\frac{1}{\sqrt{2}+\sqrt{1}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}\right)\)
\(=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{3}+\sqrt{4}}...+\frac{1}{\sqrt{79}+\sqrt{80}}\)
\(>\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{80}+\sqrt{81}}\)
\(=\left(\sqrt{2}-\sqrt{1}\right)+\left(\sqrt{3}-\sqrt{2}\right)+....+\left(\sqrt{80}-\sqrt{79}\right)+\left(\sqrt{81}-\sqrt{79}\right)\)
\(=\sqrt{81}-1=9-1=8\Rightarrow2A>8\Leftrightarrow A>8\)( Đpcm)
\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}>4\) CMBĐT
Chứng minh rằng: \(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{5}+\sqrt{6}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}>4\)
Đặt \(A=\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{5}+\sqrt{6}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}\)
Ta có: \(\frac{1}{1+\sqrt{2}}>\frac{1}{2}\left(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}\right)\)
\(\frac{1}{\sqrt{3}+\sqrt{4}}>\frac{1}{2}\left(\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}\right)\)
...
\(\frac{1}{\sqrt{79}+\sqrt{80}}>\frac{1}{2}\left(\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{80}+\sqrt{81}}\right)\)
Cộng các bất đẳng thức trên lại với nhau, ta được:
\(A>\frac{1}{2}\left(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{80}+\sqrt{81}}\right)\)
\(\Leftrightarrow A>\frac{1}{2}\left(\frac{\sqrt{2}-1}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{81}-\sqrt{80}}{81-80}\right)\)
\(\Leftrightarrow A>\frac{1}{2}\left(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{81}-\sqrt{80}\right)\)
\(\Leftrightarrow A>\frac{1}{2}\left(\sqrt{81}-1\right)=\frac{1}{2}\cdot\left(9-1\right)=\frac{1}{2}\cdot8=4\)
\(\Leftrightarrow A>4\)(đpcm)
CM:
\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}>4\)
Ta chứng minh được \(\frac{1}{\sqrt{n}+\sqrt{n+1}}=\sqrt{n+1}-\sqrt{n}\) với mọi n là số tự nhiên lớn hơn 0
Đặt \(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}\)
Ta có \(2A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{79}+\sqrt{80}}>\)
\(>\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{80}+\sqrt{81}}\)
\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+\sqrt{5}-\sqrt{4}+...+\sqrt{80}-\sqrt{79}+\sqrt{81}-\sqrt{80}\)
\(=\sqrt{81}-\sqrt{1}=8\)
\(\Rightarrow2A>8\Rightarrow A>4\)
\(\frac{1}{\sqrt{n}+\sqrt{n+1}}=\frac{\sqrt{n+1}-\sqrt{n}}{n+1-n}=\sqrt{n+1}-\sqrt{n}\)
\(\rightarrow\)VT = \(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{80}-\sqrt{79}=\sqrt{80}-1>4\)
\(Chứngminh:\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}>4\)
chưngs minh S=\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+....+\frac{1}{\sqrt{79}+\sqrt{80}}>4\)
\(S=\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}\)
\(\Leftrightarrow2S=\frac{1}{1+\sqrt{2}}+\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{79}+\sqrt{80}}\)
\(>\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{80}+\sqrt{81}}\)
\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{81}-\sqrt{80}\)
\(=\sqrt{81}-\sqrt{1}=9-1=8\)
\(\Rightarrow S>\frac{8}{2}=4\)
trục căn thức ở mẫu lên
\(S=\sqrt{2}-1+...+\sqrt{80}-\sqrt{79}\)
\(S=\sqrt{80}-1\)
\(\left(\sqrt{80}-1+1\right)^2=80\)
\(\left(4+1\right)^2=25< 80\)
vậy ...
Cho A=\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+.................+\frac{1}{\sqrt{79}+\sqrt{80}}\)
CM A>4
Với mọi n thuộc N ta có :
\(\frac{1}{\sqrt{n}+\sqrt{n+1}}=\frac{\sqrt{n+1}-\sqrt{n}}{\left(\sqrt{n}+\sqrt{n+1}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{\left(n+1\right)-n}=\sqrt{n+1}-\sqrt{n}\)
Áp dụng ta được :
\(A=\sqrt{2}-\sqrt{1}+\sqrt{4}-\sqrt{3}+....+\sqrt{80}-\sqrt{79}\)
\(=\left(\sqrt{2}+\sqrt{4}+...+\sqrt{80}\right)-\left(\sqrt{1}+\sqrt{3}+...+\sqrt{79}\right)\)
Đến đây tịt òy ai vô giải nối với :((((((((((
Ta có:
\(2A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{1}+\sqrt{2}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{79}+\sqrt{80}}\)
> \(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{80}+\sqrt{81}}\)
\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{81}-\sqrt{80}\)
\(=\sqrt{81}-\sqrt{1}=9-1=8\)
\(\Rightarrow A>4\)