\(\dfrac{2x+1}{2}\)=\(\dfrac{4y-5}{9}\)=\(\dfrac{2x+4y-4}{2020x}\)
Tìm x, y, z biết:
a, \(\dfrac{2x+1}{5}=\dfrac{4y-5}{9}=\dfrac{2x+4y-4}{7x}\)
\(x=-\dfrac{1}{2}=-0.5,y=\dfrac{5}{4}=1.25\\x=2,y=\dfrac{7}{2}=3.5\)
Tìm x;y;z
\(\dfrac{2x+1}{5}=\dfrac{4y-5}{9}=\dfrac{2x+4y-4}{-7}\)
Tìm x,y biết:
\(\dfrac{2x+1}{5}=\dfrac{4y-5}{9}=\dfrac{2x+4y-4}{7x}\)
Ta có \(\dfrac{2x+1}{5}\)=\(\dfrac{4y-5}{9}\)=\(\dfrac{2x+4y-4}{7x}\)=
\(\dfrac{2x+1+4y-5}{14}\)=\(\dfrac{2y+4y-4}{14}\)
Từ \(\dfrac{2x+4y-4}{14}\)=\(\dfrac{2x+4y-4}{7x}\)\(\Rightarrow\)14=7x\(\Rightarrow\)x=2\(\Rightarrow\)\(\dfrac{2x+1}{5}\)=\(\dfrac{4y-5}{9}\)=1
\(\Rightarrow\) y= (9+5):4=3,5 Vậy x=2 y=3,5\(\dfrac{2x+1}{5}=\dfrac{4y-5}{9}=\dfrac{2x+4y-4}{7x\left(?\right)}\) lớp 7 sao khó vậy
Tìm x;y;z biết :
1) \(\dfrac{1+2y}{6}=\dfrac{3+4y}{5}=\dfrac{9+6y}{2x+1}\)
2) \(\dfrac{1+2y}{18}=\dfrac{1+4y}{28}=\dfrac{1+6y}{6x}\)
2) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{1+2y}{18}=\dfrac{1+6y}{6x}=\dfrac{1+2y+1+6y}{18+6x}=\dfrac{2\left(1+4y\right)}{2\left(9+3x\right)}=\dfrac{1+4y}{9+3x}\)
⇒ \(\dfrac{1+4y}{9+3x}=\dfrac{1+4y}{28}\)
⇒\(9+3x=28\)
⇒\(3x=19\)
⇒\(x=\dfrac{19}{3}\)
bạn thay vào là tìm được y
1, \(\dfrac{1+2x}{3}\)= \(\dfrac{3-4y}{5}\)=\(\dfrac{2x-4y+4}{-16x}\) Tìm x, y
Cần gấp ạ , giúp mình nhanh với
Tìm x; y
\(\dfrac{2x+1}{5}=\dfrac{4y-2}{7}=\dfrac{2x+4y-1}{6x}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{2x+1}{5}=\frac{4y-2}{7}=\frac{2x+4y-1}{6x}=\frac{\left(2x+1\right)+\left(4y-2\right)}{5+7}=\frac{2x+4y-1}{12}\)
\(\Rightarrow\frac{2x+4y-1}{6x}=\frac{2x+4y-1}{12}\)
\(\Rightarrow6x=12\)
\(\Rightarrow x=2\)
Thay x = 2 , ta được :
\(\frac{2x+1}{5}=\frac{4y-2}{7}\)
hay \(1=\frac{4y-2}{7}\Rightarrow4y-2=7\Rightarrow4y=9\Rightarrow y=\frac{9}{4}\)
Vậy x = 2 ; y = \(\frac{9}{4}\)
Tìm điều kiện của x để phân thức sau xác định;
a)\(\dfrac{\dfrac{1}{x-4}}{2x+2}\)
b)\(\dfrac{x^3+2x}{4x^2-25}\)
c)\(\dfrac{2x^2+2x}{8x^3+27}\)
d)\(\dfrac{2x+1}{\left(2x+2\right)\left(4y^2-9\right)}\)
`a,ĐKXĐ:x-4 ne 0,2x+2 ne 0`
`<=>x ne 4,x me -1`
`b,ĐKXĐ:4x^2-25 ne 0`
`<=>(2x-5)(2x+5) ne 0`
`<=>x ne +-5/2`
`c,ĐKXĐ:8x^3+27 ne 0`
`<=>8x^3 ne -27`
`<=>2x ne -3`
`<=>x ne -3/2`
`d,2x+2 ne 0,4y^2-9 ne 0`
`<=>2x ne -2,(2y-3)(2y+3) ne 0`
`<=>x ne -1,y ne +-3/2`
b) ĐKXĐ: \(x\notin\left\{\dfrac{5}{2};-\dfrac{5}{2}\right\}\)
c) ĐKXĐ: \(x\ne-\dfrac{3}{2}\)
d) ĐKXĐ: \(\left\{{}\begin{matrix}x\ne-1\\y\notin\left\{\dfrac{3}{2};-\dfrac{3}{2}\right\}\end{matrix}\right.\)
Tìm x; y
\(\dfrac{2x+1}{5}=\dfrac{4y-2}{7}=\dfrac{2x+4y-1}{6x}\)
A = \(\dfrac{5xy^2-3z}{3xy}+\dfrac{4x^2y+3z}{3xy}\)
B = \(\dfrac{3y+5}{y-1}+\dfrac{-y^2-4y}{1-y}+\dfrac{y^2+y+7}{y-1}\)
C = \(\dfrac{6x}{x^2-9}+\dfrac{5x}{x-3}+\dfrac{x}{x+3}\)
D = \(\dfrac{1-3x}{2x}+\dfrac{3x-2}{2x-1}+\dfrac{3x-2}{2x-4x^2}\)
E = \(\dfrac{x^3+2x}{x^3+1}+\dfrac{2x}{x^2-x+1}+\dfrac{1}{x+1}\)
b: \(B=\dfrac{3y+5}{y-1}-\dfrac{-y^2-4y}{y-1}+\dfrac{y^2+y+7}{y-1}\)
\(=\dfrac{3y+5+y^2+4y+y^2+y+7}{y-1}\)
\(=\dfrac{2y^2+8y+12}{y-1}\)