\(cosxcos2xcos4x=-\frac{\sqrt{2}}{16}\)
Tính:
\(\left(\frac{2}{5}.\sqrt{16}+2\sqrt{\frac{16}{25}}\right):2\sqrt{\frac{1}{16}}\)
\(\left(\frac{2}{5}\sqrt{16}+2\sqrt{\frac{16}{25}}\right):2\sqrt{\frac{1}{16}}=\left(\frac{2}{5}.\sqrt{4^2}+2\sqrt{\frac{4^2}{5^2}}\right):\frac{2}{\sqrt{4^2}}\)
\(=\left(\frac{2}{5}.4+2.\frac{4}{5}\right).2=\left(\frac{8}{5}+\frac{8}{5}\right).2=\frac{32}{5}\)
\(\left(\frac{2}{5}.\sqrt{16}+2\sqrt{\frac{16}{25}}\right):2\sqrt{\frac{1}{16}}\)
\(=\left(\frac{2}{5}.4+2.\frac{4}{5}\right):2.\frac{1}{4}\)
\(=\left(\frac{8}{5}+\frac{8}{5}\right):\frac{1}{2}\)
\(=\frac{16}{5}:\frac{1}{2}\)
\(=\frac{32}{5}\)
^...^ ^_^
\(\left(\frac{2}{5}\sqrt{16}+2\sqrt{\frac{16}{25}}\right):2\sqrt{\frac{1}{16}}\)
\(=\left(\frac{2}{5}.4+2.\frac{4}{5}\right):2.\frac{1}{4}\)
\(=\left(\frac{8}{5}+\frac{8}{5}\right):\frac{1}{2}\)
\(=\frac{16}{5}:\frac{1}{2}\)
\(=\frac{16}{5}.2\)
\(=\frac{32}{5}\)
Tính
a) \(2\sqrt{\frac{25}{16}}-3\sqrt{\frac{49}{36}}+4\sqrt{\frac{81}{64}}\)
b) \(\left(3\sqrt{2}\right)^2-\left(4\sqrt{\frac{1}{2}}\right)^2+\frac{1}{16}.\left(\sqrt{\frac{3}{4}}\right)^2\)
c) \(\frac{2}{3}\sqrt{\frac{81}{16}}-\frac{3}{4}\sqrt{\frac{64}{9}}+\frac{7}{5}.\sqrt{\frac{25}{196}}\)
a) = \(\frac{7}{2}\)
b) = \(\frac{643}{64}\)
c) = 0
\(\lim\limits_{x\rightarrow0}\dfrac{1-cosxcos2xcos4x}{1-cos2x}\)
Cách khác: Sử dụng khai triển Taylor-Maclaurin
\(\cos x=1-\dfrac{x^2}{2!}+o\left(x^2\right)\)
\(\cos2x=1-\dfrac{4x^2}{2!}+o\left(x^2\right)\)
\(\cos4x=1-\dfrac{16x^2}{2!}+o\left(x^2\right)\)
\(\Rightarrow1-\cos x\cos2x\cos4x=1-\left(1-\dfrac{x^2}{2}+o\left(x^2\right)\right)\left(1-2x^2+o\left(x^2\right)\right)\left(1-8x^2+o\left(x^2\right)\right)\)
\(=1-\left(1-\dfrac{5x^2}{2}+o\left(x^2\right)\right)\left(1-8x^2+o\left(x^2\right)\right)=1-1+8x^2+\dfrac{5x^2}{2}+o\left(x^2\right)=\dfrac{21x^2}{2}+o\left(x^2\right)\)
\(\Rightarrow\lim\limits_{x\rightarrow0}\dfrac{1-\cos x\cos2x\cos4x}{1-\cos2x}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{21}{2}x^2+o\left(x^2\right)}{2x^2+o\left(x^2\right)}=\dfrac{21}{4}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{1-cosx+\left(1-cos2x\right)cosx+\left(1-cos4x\right)cosx.cos2x}{1-cos2x}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{1-cosx}{1-cos2x}+\lim\limits_{x\rightarrow0}\dfrac{\left(1-cos2x\right)}{1-cos2x}.cosx+\lim\limits_{x\rightarrow0}\dfrac{\left(1-cos4x\right)}{1-cos2x}.cosx.cos2x\)
\(=\lim\limits_{x\rightarrow0}\dfrac{1-cosx}{2\left(1-cosx\right)\left(1+cosx\right)}+\lim\limits_{x\rightarrow0}\left(cosx\right)+\lim\limits_{x\rightarrow0}\dfrac{2\left(1-cos2x\right)\left(1+cos2x\right)}{1-cos2x}.cosx.cos2x\)
\(=\lim\limits_{x\rightarrow0}\left(\dfrac{1}{2\left(1+cosx\right)}\right)+\lim\limits_{x\rightarrow0}\left(cosx\right)+\lim\limits_{x\rightarrow0}2cosx.cos2x.\left(1+cos2x\right)\)
\(=\dfrac{1}{4}+1+4=\dfrac{21}{4}\)
\(1-cosx.cos2x.cos3x...cosnx\)
\(=1-cosx+cosx\left(1-cos2x\right)+cosx.cos2x\left(1-cos3x\right)+...+cosx.cos2x...cos\left(n-1\right)x\left(1-cosnx\right)\)
Hay nói chung là:
\(1-a.b.c.d...m.n\)
\(=1-a+a\left(1-b\right)+ab\left(1-c\right)+abc\left(1-d\right)+...+ab...m\left(1-n\right)\)
Rút gọn
1,\(2\sqrt{\frac{16}{3}}-3\sqrt{\frac{1}{27}}-6\sqrt{\frac{4}{75}}\)
2,\(\left(2\sqrt{\frac{16}{3}}-3\sqrt{\frac{1}{27}}-6\sqrt{\frac{4}{75}}\right)\sqrt{3}\)
3,\(\left(6\sqrt{\frac{8}{9}}-5\sqrt{\frac{32}{25}}+14\sqrt{\frac{18}{49}}\right)\sqrt{\frac{1}{2}}\)
4,\(\frac{1}{2}\sqrt{48}-2\sqrt{75}-\frac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\frac{1}{3}}\)
5,\(\left(\sqrt{\frac{1}{7}}-\sqrt{\frac{16}{7}}+\sqrt{7}\right):\sqrt{7}\)
\(\frac{\sqrt{4-2\sqrt{3}}}{\sqrt{28-16\sqrt{3}}}-\frac{\sqrt{4+2\sqrt{3}}}{\sqrt{28+16\sqrt{3}}}\)
rút gọn \(\sqrt{\frac{289+4\sqrt[]{72}}{16}}+\sqrt{\frac{129}{16}+\sqrt{2}}\)
\(\sqrt{\frac{289+4\sqrt{72}}{16}}+\sqrt{\frac{129}{16}+\sqrt{2}}\)
\(=\sqrt{\frac{288+2\times12\sqrt{2}+1}{4^2}}+\sqrt{\frac{128+2\sqrt{12}+1}{4^2}}\)
\(=\sqrt{\frac{\left(\sqrt{288}+1\right)^2}{4^2}}+\sqrt{\frac{\left(\sqrt{128}+1\right)^2}{4^2}}\)
\(=\frac{\sqrt{288}+1}{4}+\frac{\sqrt{128}+1}{4}\)
\(=\frac{12\sqrt{2}+8\sqrt{2}+2}{4}\)
\(=\frac{1+10\sqrt{2}}{2}\)
Tính:
\(A=\frac{\frac{\sqrt{2+\sqrt{3}}}{2}}{\frac{\sqrt{2+\sqrt{3}}}{2}-\frac{2}{\sqrt{16}}+\frac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}}\)\(B=\frac{2\left(\frac{\sqrt{2}+\sqrt{3}}{6\sqrt{2}}\right)^{-1}+3\left(\frac{\sqrt{2}+\sqrt{3}}{4\sqrt{3}}\right)^{-1}}{\left(\frac{2+\sqrt{16}}{12}\right)^{-1}+\left(\frac{3+\sqrt{6}}{12}\right)^{-1}}\)P/s: Đề phức tạp vlin nên thớt giải k nổi :)) Pro nào giúp em dí ~
a.\(\sqrt{\frac{289+4\sqrt{72}}{16}}+\sqrt{\frac{129}{16}+\sqrt{2}}\)
b. \(\sqrt{16-6\sqrt{7}}+\sqrt{10-2\sqrt{21}}\)
c. \(\sqrt{28+\sqrt{300}}+\sqrt{19-\sqrt{192}}\)
\(\sqrt{16-6\sqrt{7}}=\sqrt{9-2.3\sqrt{7}+7}=\sqrt{\left(3-\sqrt{7}\right)^2}=3-\sqrt{7};\sqrt{10-2\sqrt{21}}=\sqrt{3-2\sqrt{3}\sqrt{7}+7}=\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}=\sqrt{7}-\sqrt{3}\Rightarrow\sqrt{16-6\sqrt{7}}+\sqrt{10-2\sqrt{21}}=3-\sqrt{3}\)
Giúp mik với
Tính
a)\(\frac{2}{3}\sqrt{81}-\left(\frac{-3}{4}\right).\sqrt{\frac{9}{64}}+\left(\frac{\sqrt{2}}{3}\right)^2\)
b)\(\left(-\sqrt{\frac{5}{4}}\right)^2-\sqrt{\frac{9}{4}}:\left(-4,5\right)-\sqrt{\frac{25}{16}}.\sqrt{\frac{64}{9}}\)
c)\(-2^4-\left(-2\right)^2:\left(-\sqrt{\frac{16}{121}}\right)-\left(-\sqrt{\frac{2}{3}}\right)^2:\left(-2\frac{2}{3}\right)\)