Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hihi
Xem chi tiết
hihi
Xem chi tiết
Pham An
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 11 2021 lúc 18:18

Giả thiết tương đương:

\(C_{2n+1}^{n+1}+C_{2n+1}^{n+2}+...+C_{2n+1}^{2n}+C_{2n+1}^{2n+1}=2^{100}\) (thay \(1=C_{2n+1}^{2n+1}\))

Mặt khác:

\(C_{2n+1}^{2n+1}=C_{2n+1}^0\)

\(C_{2n+1}^{2n}=C_{2n+1}^1\)

....

\(C_{2n+1}^{n+1}=C_{2n+1}^n\)

Cộng vế:

\(\Rightarrow C_{2n+1}^{n+1}+C_{2n+1}^{n+2}+...+C_{2n+1}^{2n+1}=C_{2n+1}^0+C_{2n+1}^1+...+C_{2n+1}^n\)

\(\Rightarrow2\left(C_{2n+1}^{n+1}+...+C_{2n+1}^{2n+1}\right)=C_{2n+1}^0+C_{2n+1}^1+...+C_{2n+1}^{2n+1}\)

\(\Rightarrow2.2^{100}=2^{2n+1}\) (đẳng thức cơ bản: \(\sum\limits^n_{k=0}C_n^k=2^n\))

\(\Leftrightarrow2^{101}=2^{2n+1}\)

\(\Rightarrow2n+1=101\)

\(\Rightarrow n=50\)

SHTQ trong khai triển: \(C_{50}^k.\left(x^{-3}\right)^k.\left(x^2\right)^{50-k}=C_{50}^kx^{100-5k}\)

\(100-5k=20\Rightarrow k=16\)

Hệ số: \(C_{50}^{16}\)

anna pham
Xem chi tiết
Lisa Margaret
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 5 2022 lúc 15:33

a: \(4x^2\left(3x^{n+1}-2x^n\right)\)

\(=4x^2\cdot3x^{n+1}-4x^2\cdot2x^n\)

\(=12x^{n+3}-8x^{n+2}\)

b: \(2\left(x^{2n}+2x^ny^n+y^{2n}\right)-y^n\left(4x^n+2y^n\right)\)

\(=2x^{2n}+4x^ny^n+2y^{2n}-4x^ny^n-2y^{2n}\)

\(=2x^{2n}\)

c: \(=\left(x^{3n}-y^{3n}\right)\left(x^{3n}+y^{3n}\right)\)

\(=x^{6n}-y^{6n}\)

d: \(=4^n\cdot4-3\cdot4^n=4^n\)

Võ Quang Nhân
29 tháng 5 2022 lúc 16:32

a: 4x2(3xn+1−2xn)4x2(3xn+1−2xn)

=4x2⋅3xn+1−4x2⋅2xn=4x2⋅3xn+1−4x2⋅2xn

=12xn+3−8xn+2=12xn+3−8xn+2

b: 2(x2n+2xnyn+y2n)−yn(4xn+2yn)2(x2n+2xnyn+y2n)−yn(4xn+2yn)

=2x2n+4xnyn+2y2n−4xnyn−2y2n=2x2n+4xnyn+2y2n−4xnyn−2y2n

=2x2n=2x2n

c: =(x3n−y3n)(x3n+y3n)=(x3n−y3n)(x3n+y3n)

=x6n−y6n=x6n−y6n

d: =4n⋅4−3⋅4n=4n

Nie =)))
Xem chi tiết
Juny so sad
16 tháng 8 2021 lúc 21:15

Chj có thê ấn vào phân tìm kiếm đê có đáp án ah

#lâurôi

====ZU====

@EMĐÂY

Khách vãng lai đã xóa
Trần Nguyễn Duy Long
Xem chi tiết
Toru
5 tháng 12 2023 lúc 21:39

Với \(n\in\mathbb{N^*}\), ta có: \(\left\{{}\begin{matrix}\left(x+1\right)^{2n}\ge0\forall x\\\left(y-1\right)^{2n}\ge0\forall y\end{matrix}\right.\)

\(\Rightarrow\left(x+1\right)^{2n}+\left(y-1\right)^{2n}\ge0\forall x,y\)

Mà: \(\left(x+1\right)^{2n}+\left(y-1\right)^{2n}=0\)

nên: \(\left\{{}\begin{matrix}x+1=0\\y-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

Vậy ...

Hồ Minh Phi
Xem chi tiết
JIMIN OPPA NAE
26 tháng 9 2018 lúc 8:46

e ko bt

nguyễn thị thảo ngọc
Xem chi tiết
Nguyễn Quang Tùng
18 tháng 12 2016 lúc 6:52

ta có

  1+m =  \(\frac{2x^n}{x^n+\frac{1}{x^n}}\), 1-m = \(\frac{2}{x^n\left(x^n+\frac{1}{x^x}\right)}\)

=> \(\frac{1+m}{1-m}\)= x2n

do đó P = \(\frac{\frac{1+m}{1-m}-\frac{1-m}{1+m}}{\frac{1+m}{1-m}+\frac{1-m}{1+m}}\)\(\frac{\left(1+m\right)^2-\left(1-m\right)^2}{\left(1-m\right)\left(1+m\right)}\)\(\frac{\left(1-m\right)\left(1+m\right)}{\left(1+m\right)^2+\left(1-m\right)^2}\)

\(\frac{2m}{1+m^2}\)

alibaba nguyễn
17 tháng 12 2016 lúc 22:53

Đặt x​ 2n = a ta có

\(\frac{x^n-x^{-n}}{x^n+x^{-n}}=\frac{x^{2n}-1}{x^{2n}+1}=\frac{a-1}{a+1}=m\)

\(\Leftrightarrow a-1=m\left(a+1\right)\)

\(\Leftrightarrow a\left(1-m\right)=1+m\)

\(\Leftrightarrow a=\frac{1+m}{1-m}\)

Ta lại có

\(\frac{x^{2n}-x^{-2n}}{x^{2n}+x^{-2n}}=\frac{x^{4n}-1}{1+x^{4n}}=\frac{a^2-1}{1+a^2}\)

Tới đây thì e chỉ cần thế vô rồi rút gọn là ra nhé

ngonhuminh
17 tháng 12 2016 lúc 23:33

\(\Leftrightarrow!m!< 1\)

\(\frac{x^n-x^{-n}}{x^n+x^{-n}}=\frac{\left(x^{2n}-1\right)}{\left(x^{2n}+1\right)}=x^{2n}=\frac{m+1}{1-m}=>x^2=\sqrt[n]{\frac{m+1}{1-m}}\)

\(P=\frac{x^{4n}-1}{x^{4n}+1}=\frac{\left(\frac{m+1}{1-m}\right)^2-1}{\left(\frac{m+1}{1-m}\right)^2+1}=\frac{\left(m+1\right)^2-\left(1-m\right)^2}{\left(m+1\right)^2+\left(1-m\right)^2}=\frac{2m}{m^2+1}\\ \)