Tam giác ABC có AC = 2AB và ∠A = 2∠C. Chứng minh AB ⊥ BC.
Tam giác ABC có AC = 2AB và ∠A = 2∠C. Chứng minh AB ⊥ BC.
Cho tam giác ABC vuông tại A có góc B=60 độ . Tia phân giác góc B cắt AC ở D. Kẻ CK vuông góc với tia BD ở K.
a) Tính số đo góc ABD, góc ACB. Chứng minh tam giác BCD là tam giác cân.
b) Chứng minh : AB=CK.
c) Chứng minh : tam giác AKB và tam giác KAC bằng nhau.
d) Chứng minh : BC=2AB.
-Giúp với, cần gấp -
Cho tam giác ABC có AB = AC và tia phân giác góc A cắt BC ở H.
a) Chứng minh ΔABH = Δ ACH.
b) Chứng minh AH ⊥
c) Vẽ HD ⊥ AB (D ∈ AB) và HE ⊥ AC (E ∈ EC). Chứng minh DE // BC.
a/ Xét \(\Delta ABH\) và \(\Delta ACH\) có:
\(AB=AC\left(gt\right)\)
\(\widehat{BAH}=\widehat{CAH}\) (AH phân giác \(\widehat{A}\) )
AH cạnh chung
Vậy \(\Delta ABH=\Delta ACH\left(cgc\right)\)
b/ Ta có: \(\widehat{AHB}=\widehat{AHC}\left(\Delta ABH=\Delta ACH\right)\)
mà \(\widehat{AHB}+\widehat{AHC}=180^o\) (kề bù )
\(\Rightarrow\widehat{AHB}=\widehat{AHC}=\dfrac{180^o}{2}=90^o\)
\(\Rightarrow AH\perp BC\)
c/ Gọi I là giao điểm của AH và DE.
Xét \(\Delta\) vuông BDH và \(\Delta\) vuông CEH có:
\(\widehat{B}=\widehat{C}\left(\Delta ABH=\Delta ACH\right)\\ BH=CH\left(\Delta ABH=\Delta ACH\right)\)
Vậy \(\Delta\) vuông BDH = \(\Delta\) vuông CEH (ch-gn )
\(\Rightarrow BD=CE\) (cạnh tương ứng )
Ta có:
\(AD=AB-BD\left(D\in AB\right)\\ AE=AC-CE\left(E\in AC\right)\)
mà \(\left\{{}\begin{matrix}AB=AC\left(gt\right)\\BD=CE\left(cmt\right)\end{matrix}\right.\)
\(\Rightarrow AD=AE\)
Xét \(\Delta AID\) và \(\Delta AIE\) có:
\(AD=AE\left(cmt\right)\)
\(\widehat{DAH}=\widehat{EAH}\) (AD phân giác \(\widehat{A}\) )
AI cạnh chung
Vậy \(\Delta AID=\Delta AIE\left(cgc\right)\)
\(\Rightarrow\widehat{AID}=\widehat{AIE}\) (góc tương ứng )
mà \(\widehat{AID}+\widehat{AIE}=180^O\) (kề bù )
\(\Rightarrow\widehat{AID}=\widehat{AIE}=\dfrac{180^O}{2}=90^O\\ \Rightarrow AH\perp ED\)
mà:
\(AH\perp BC\left(cmt\right)\\ \Rightarrow ED//BC\)
Chúc bạn học tốt
Hòa An Nguyễn mk chỉ vẽ đc hình thôi..còn cách giải thì mk lười bẩm sinh r....>.<
Giúp mình bài này với đang cần gấp, mình cảm ơn ạ :
Cho tam giác ABC có AB = AC và tia phân giác góc A cắt BC ở H.
a) (vd) Chứng minh
b) (VD) Chứng minh AH BC
c) (VD)Vẽ HD AB và HE AC . Chứng minh: HD = HE
cho tam giác ABC có các điểm D, E theo thứ tự là trung điểm của AB, AC. trên tia DE lấy điểm F sao cho DE = EF
a) chứng minh rằng: tam giác AED = tam giác CEF và có nhận xét ji về DÂE và FCÊ
b) chứng minh rằng: AD // CF
c) Đường thẳng qua E và song song với AB cắt BC ở F. chứng minh rằng DE = 1 /2 BC
Cho tam giác ABC có AB=6cm, AC=8cm, BC=10cm.
a) Chứng minh rằng tam giác ABC là tam giác vuông.
b) Kẻ đường cao AH. Gọi M và N lần lượt là hình chiếu của H trên AB và AC. Tính MN
c) Chứng minh rằng: AM.AB=AN.AC
d) Chứng minh rằng: BM.CN.BC=AH^3
Tam giác ABC có AB = 3 , AC = 4 , BC = 5 ; đường cao AH. Kẻ HD phan giac AB , HE phan giac AC
a) hỏi tam giác ABC là tam giác gì ? Tính AH ; Tính chu vi , diện tích tam giác ABC
b) Chứng minh DE = AH
c) Chứng minh DE và AH cắt nhau tại trung điểm mỗi đoạn
Cho tam giác ABC có AB = AC = 5 cm, BC=6cm . Đường trung tuyến AM xuất phát từ đỉnh A của tam giác ABC
a) Chứng minh tam giác AMB = tam giác AMC và AM là tia phân giác của góc A
b) Chứng minh AM vuông góc BC
c) Tính độ dài các đoạn thẳng AM , BM
d) Từ M vẽ ME vuông góc AB ( E thuộc AB ) và MF vuông góc AC. Tam giác MEF là tam giác j ? Vì sao ?
ban tu ve hinh nha:
xet tam giacAMB va tam giaAMC
AB=AC
AM chung
M1=m2
suy ra hai tam giacAmb va amc bang nhau.
b, Vì tam giác AMB=tam giác AMC ( theo câu a) nên góc AMB=góc AMC(2 góc tương ứng).
mà AMB + AMC = 180 độ ( kề bù ) nên suy ra góc AMB=góc AMC=180 độ:2= 90 độ
\(\Rightarrow\) AM vuông góc với BC
c, Vì AM là đường trung tuyến xuất phát từ đỉnh A nên M là trung điểm của BC suy ra BM=MC=BC:2=3(cm)
Áp dụng định lí Pytago vào tam giác vuông AMB ( góc AMB =90 độ) , ta có:
AB2=AM2+MB2
\(\Rightarrow\) BM2=52-32=25-9=16
\(\Rightarrow\)BM = \(\sqrt{16}\) =4 (cm)
Vì MB=MC mà MB=4cm nên MC=4(cm)
Bài 1: Cho tam giác ABC vuông tại A, có AB < AC. Trên cạnh BC lất điểm D sao cho BD = BA. Kẻ Ah vuông góc với BC, kẻ DK vuông góc với AC.
a) Chứng minh: góc BAD = góc BDA
b) Chứng minh: AD là phân giác của góc HAC
c) Chứng minh: AK = AH
d) Chứng minh: AB + AC < BC + AH
Bài 2: Cho tam giác cân ABC có AB = AC = 5 cm, BC = 8 cm. Kẻ Ah vuông góc với BC ( H thuộc BC )
a) Chứng minh: HB = HC và góc CAH = góc BAH
b) AH = ?
c) Kẻ HD vuông góc với AB ( D thuộc AB ), kẻ HE vuông góc với AC ( E thuộc AC ). Chứng minh: DE song song BC