Cho tam giác ABC vuông tại A, biết AB=1/3AC.
a)Tính số đo B và C của tam giác ABC.
b) Kẻ AH vuông góc BC. Tính tỉ số BH/CH.
c) Biết diện tích tam giác ABC bằng 15cm^2. Tính diện tích tam giác ABH
Bài 1: Cho tam giác ABC có AB= 28cm, AC= 35cm, góc A= 60 độ. Tính BC
Bài 2: Cho tam giác ABC vuông tại A, đường cao AH. Gọi M, N lần lượt là hình chiếu của H trên AB, AC. Chứng minh rằng:
a) AM.AB=AN.AC
b) AM.AB+AN.AC= 2 MN2
c) AM.BM+AN.CN= AH2
d) BM/CN = AB3/AC3
Cho tam giác ABC vuông tại A (AB < AC) có AH là đường cao (H \(\in\) BC). Gọi M và N lần lượt là hình chiếu của H lên AB và AC.
a) Chứng minh: AM.AB = AN.AC
b) Chứng minh: AM.AN = \(\frac{AH^3}{BC}\)
c) Chứng minh: AB3.CN = AC3.BM
Cho tam giác ABC vuông tại A, đường cao AH. Biết AB=6cm. AC=8cm a) Tính BC,AH, góc B,góc C b) Vẽ AM là đường trung tuyến của tam giác ABC (M thuộc BC) . Chứng minh góc BAH= góc MAC c) Vẻ HE vuông góc AB (E thuộc AB), HF vuông góc AC (F thuộc AC) . Chứng minh EF vuông góc AM tại K và tính độ dài AK
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu của H trên AB, AC. a) Viết tỉ số lượng giác góc B của AABC. b) Cho AB=6cm, AC = 8cm . Tính BC,AH c ) Chứng minh: AE.AB = AF AC
1. Cho tam giác ABC vuông tại A có góc B= 60 độ, AB= 4cm
a. Giải tam giác vuông
b. kẻ đường cao AH. Gọi M,N là hình chiếu của H lên AB, AC. Tính: - AH
- chứng minh AM.AB=AN.AC
Cho ΔABC có AB = 6 cm; AC = 7,5 cm; BC = 4,5 cm. Chứng minh ΔABC là Δ vuông từ đó tính số đô góc A.
Cho tam giác vuông ABC vuông tại a AB bé hơn AC có đường cao AH (H thuộc BC) AB = 3 BH =1,8 A) tính BC AH AC B) kẻ HD vuông AC (D thuộc AC) chứng minh HC = AD.AC/HB C) gọi e là điểm đối xứng với H qua AB. Chứng minh S tam giác AED = sin²AHD . S tam giác ACE
Cho tam giác ABC vuông tại A, đường phân giác trong AD và đường phân giác ngoài AE:
CMR:a/\(\frac{\sqrt{2}}{AD}=\frac{1}{AB}+\frac{1}{AC}\);b/\(\frac{\sqrt{2}}{AE}=\left|\frac{1}{AB}-\frac{1}{AC}\right|\)