Cho : a + 2020/ a - 2020 = b + 2021/ b- 2021
CM : a/2020 = b/2021
So sánh:
A=2021^2020+2/2021^2020-1 và B=2021^2020/2021^2020-3
a,Cho M= 2020+20202+...+202010
Chứng minh M : 2021 dư 0
b, Cho A= 2021+20212+...+20212020
Chứng minh A:2022 dư 0
a) \(M=2020+2020^2+...+2020^{10}\)
\(M=\left(2020+2020^2\right)+\left(2020^3+2020^4\right)+...+\left(2020^9+2020^{10}\right)\)
\(M=2020\left(1+2020\right)+2020^3\left(1+2020\right)+...+2020^9\left(1+2020\right)\)
\(M=2021\left(2020+2020^3+...+2020^9\right)⋮2021\).
b) Bạn làm tương tự câu a).
b, \(A=2021+2021^2+...+2021^{2020}\)
\(=2021\left(1+2021\right)+...+2021^{2019}\left(1+2021\right)\)
\(=2022\left(2021+...+2021^{2019}\right)⋮2022\)
Vậy ta có đpcm
Cho a,b>0: \(a^{2019}+b^{2019}=a^{2020}+b^{2020}=a^{2021}+b^{2021}\)
Tính \(P=2022-\left(a+b-ab\right)^{2022}\)
\(a^{2019}+b^{2019}=a^{2020}+b^{2020}\\ \Leftrightarrow a^{2020}-a^{2019}=b^{2019}-b^{2020}=0\\ \Leftrightarrow a^{2019}\left(a-1\right)=b^{2019}\left(1-b\right)\\ \Leftrightarrow\dfrac{a^{2019}}{b^{2019}}=\dfrac{1-b}{a-1}\left(1\right)\\ a^{2020}+b^{2020}=a^{2021}+b^{2021}\\ \Leftrightarrow a^{2021}-a^{2020}=b^{2020}-b^{2021}\\ \Leftrightarrow a^{2020}\left(a-1\right)=b^{2020}\left(1-b\right)\\ \Leftrightarrow\dfrac{a^{2020}}{b^{2020}}=\dfrac{1-b}{a-1}\left(2\right)\\ \left(1\right)\left(2\right)\Leftrightarrow\dfrac{a^{2019}}{b^{2019}}=\dfrac{a^{2020}}{b^{2020}}\Leftrightarrow\dfrac{a}{b}=1\Leftrightarrow a=b\\ \Leftrightarrow2a^{2019}=2a^{2020}\\ \Leftrightarrow a=1=b\\ \Leftrightarrow P=2022-\left(1+1-1\right)^{2022}=2021\)
Cho A = 201+2020/2020+2021 và B =2019+2020/2020+2021 So sánh A và B?
giúp mik vs nhé ai chơi mini world để lại ID sau lời giải nha ^-^
id của mik 88461550
còn câu hỏi thì mik ko bt nhé mik mới lớp4
nick là ri nhé
Ta thấy mẫu số ở PS A = mẫu số PS B nên ta xét ở tử số của 2 số.
2020+201<2020+2019 nên PS B lớn hơn
Mik ko chơi mini world nha k mik vs
so sánh
a)
A=\(\frac{10^{2020}+1}{10^{2021}+1};B=\frac{10^{2021}+1}{10^{2022}+1}\)
b)
\(A=\frac{2019}{2020}+\frac{2020}{2021}\)và \(B=\frac{2019+2020}{2020+2021}\)
Ta có : A = \(\frac{10^{2020}+1}{10^{2021}+1}\)
=> 10A = \(\frac{10^{2021}+10}{10^{2021}+1}=1+\frac{9}{10^{2021}+1}\)
Lại có : \(B=\frac{10^{2021}+1}{10^{2022}+1}\)
=> \(10B=\frac{10^{2022}+10}{10^{2022}+1}=1+\frac{9}{10^{2022}+1}\)
Vì \(\frac{9}{10^{2022}+1}< \frac{9}{10^{2021}+1}\)
=> \(1+\frac{9}{10^{2022}+1}< 1+\frac{9}{10^{2022}+1}\)
=> 10B < 10A
=> B < A
b) Ta có : \(\frac{2019}{2020+2021}< \frac{2019}{2020}\)
Lại có : \(\frac{2020}{2020+2021}< \frac{2020}{2021}\)
=> \(\frac{2019}{2020+2021}+\frac{2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)
=> \(\frac{2019+2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)
=> B < A
a) A=10^2020+1/10^2021+1 < 10^2020+1+9/10^2022+1+9 =
10.(10^2021+1)/10.(10^2022+1) = 10^2021+1/10^2022+1 = B
Vậy A < B.
A = 2020 * 2021
_____________
2020 * 2021 + 1
và B = 2020
_______
2021
hãy so sánh A và B
So sánh
A. √2021 - √2020 và √2020 - √2019
B. √2019×2021 và 2020
C. √2019 + √2021 và 2√2020
a) Ta có: \(\sqrt{2021}-\sqrt{2020}\)
\(=\frac{\left(\sqrt{2021}-\sqrt{2020}\right)\left(\sqrt{2021}+\sqrt{2020}\right)}{\sqrt{2021}+\sqrt{2020}}\)
\(=\frac{1}{\sqrt{2020}+\sqrt{2021}}\)
Ta có: \(\sqrt{2020}-\sqrt{2019}\)
\(=\frac{\left(\sqrt{2020}-\sqrt{2019}\right)\left(\sqrt{2020}+\sqrt{2019}\right)}{\sqrt{2020}+\sqrt{2019}}\)
\(=\frac{1}{\sqrt{2019}+\sqrt{2020}}\)
Ta có: \(\sqrt{2020}+\sqrt{2021}>\sqrt{2019}+\sqrt{2020}\)
\(\Leftrightarrow\frac{1}{\sqrt{2020}+\sqrt{2021}}< \frac{1}{\sqrt{2019}+\sqrt{2020}}\)
hay \(\sqrt{2021}-\sqrt{2020}< \sqrt{2020}-\sqrt{2019}\)
b) Ta có: \(\sqrt{2019\cdot2021}\)
\(=\sqrt{\left(2020-1\right)\left(2020+1\right)}\)
\(=\sqrt{2020^2-1}\)
Ta có: \(2020=\sqrt{2020^2}\)
Ta có: \(2020^2-1< 2020^2\)
nên \(\sqrt{2020^2-1}< \sqrt{2020^2}\)
\(\Leftrightarrow\sqrt{2019\cdot2021}< 2020\)
c) Ta có: \(\left(\sqrt{2019}+\sqrt{2021}\right)^2\)
\(=2019+2021+2\cdot\sqrt{2019\cdot2021}\)
\(=4040+2\sqrt{2019\cdot2021}\)
\(=4040+2\cdot\sqrt{2020^2-1}\)
Ta có: \(\left(2\sqrt{2020}\right)^2\)
\(=4\cdot2020\)
\(=4040+2\cdot2020\)
\(=4040+2\cdot\sqrt{2020^2}\)
Ta có: \(2020^2-1< 2020^2\)
\(\Leftrightarrow\sqrt{2020^2-1}< \sqrt{2020^2}\)
\(\Leftrightarrow2\cdot\sqrt{2020^2-1}< 2\cdot\sqrt{2020^2}\)
\(\Leftrightarrow4040+2\cdot\sqrt{2020^2-1}< 4040+2\cdot\sqrt{2020^2}\)
\(\Leftrightarrow\left(\sqrt{2019}+\sqrt{2021}\right)^2< \left(2\sqrt{2020}\right)^2\)
\(\Leftrightarrow\sqrt{2019}+\sqrt{2021}< 2\sqrt{2020}\)
Câu 24: Cho biểu thức: A=1/2+1/3+1/4+.........+1/2021+1/2022 Và B=2021/1+2020/2+2019/3+.........+3/2019+2020+1/2021
B/A
\(=\dfrac{1+\dfrac{2020}{2}+1+\dfrac{2019}{3}+...+1+\dfrac{1}{2021}+1}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}+\dfrac{1}{2022}}\)
\(=\dfrac{2022\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}+\dfrac{1}{2022}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}+\dfrac{1}{2022}}=2022\)
So sánh:
\(A=\frac{2019}{2020}+\frac{2020}{2021}\) và \(B=\frac{2019+2020}{2020+2021}\)
Ta có: \(\frac{2019}{2020}>\frac{2019}{2020+2021};\frac{2020}{2021}>\frac{2020}{2020+2021}\)
=> \(\frac{2019}{2020}+\frac{2020}{2021}>\frac{2019}{2020+2021}+\frac{2020}{2020+2021}=\frac{2019+2020}{2020+2021}\)
=> A > B.