Cho x= căn(6-3căn(2+căn3)) - căn(2+căn(2+căn3)) là nghiệm phương trình x^4+16x^2+32=0
Chứng minh rằng X= căn(6 - 3căn(2 + căn3)) - căn(2 + căn(2 + căn3)) là nghiệm phương trình x^4 + 16x^2 + 32 =0
Ta có: \(X=\sqrt{6-3\sqrt{2+\sqrt{3}}}-\sqrt{2+\sqrt{2+\sqrt{3}}}\)
<=> \(X^2=6-3\sqrt{2+\sqrt{3}}+2+\sqrt{2+\sqrt{3}}-2\sqrt{3}.\sqrt{4-\left(2+\sqrt{3}\right)}\)
<= \(X^2=8-2\sqrt{2+\sqrt{3}}-2\sqrt{3}.\sqrt{2-\sqrt{3}}\)
<=> \(X^2=8-\sqrt{2}\left(\sqrt{3}+1\right)-\sqrt{6}\left(\sqrt{3}-1\right)\)
<=> \(X^2=8-4\sqrt{2}\)
<=> \(X^2-8=-4\sqrt{2}\)
=> \(X^4-16X+64=32\)
<=> \(X^4-16X^2+32=0\)
Vậy X là nghiệm phương trình \(X^4-16X^2+32=0\)
cho x=căn(2+căn(2+căn3))-căn(6-3.căn(2+căn3)). Tính giá trị của S=x4-16x
1, cho R=(2căn(a) +3căn(b))/(căn(ab) +2căn(a)-3căn(b)-6) - (6- căn(ab))/(căn(ab) +2căn(a)+3căn(b)+6)
a, Rút gọn
b, cmr nếu R=(b+81)/(b-81) thì b/a là một số chia hết cho 3
2, Giải phương trình: a, 4x^2 +1/x^2 +7=8x + 4/x b,2x^2 + 2x +1 = căn(4x+1)
3, Hình vuông ABCD , AC giao BD tại E . một đường thẳng qua A cắt bc tại M; cắt CD tại N. Gọi K là giao điểm EM và BN. cmr: CK vuông góc với BN
4, cho a,b,c; c khác 0 biết 2 phương trình x^2 + ax + bc=o; x^2 + bx + ca=0 có 1 nghiệm chung duy nhất. cmr 2 nghiệm còn lại là 2 nghiệm của phương trình x^2+cx+ab=0
Căn3(x) + căn3(2x-3) = căn3[12×(x-1)]
Căn3(x+1) +căn3(x-1) =căn3(5x)
Căn3(1+căn(x)) +căn3(1-căn(x)) =2
Căn3(x-1) +căn3(x-2) =căn3(2x-3)
Ai giúp mk đi mk sắp nát rồi
giải phương trình:
căn(x2+x+19)+căn(7x2-2x+4)+căn(13x^2+19x+7)=(căn3)(x+5)
căn3.x+y=căn 6
căn 2 nhân x-y=3
1) So sánh các căn sau
a) 2 căn3 - 5 và căn3 -4
b) 5 căn 5 - 2 căn3 và 6+4 căn5
c) 1 - căn3 và căn2 - căn6
d) căn3 - 3 căn2 và -4 căn3 + 5 căn2
e) 3 - 2 căn3 và 2 căn6 -5
\(\sqrt{3}-\frac{5}{2}>\sqrt{3}-4\text{ vì }-\frac{5}{2}>-4\)
\(\Rightarrow2.\left(\sqrt{3}-\frac{5}{2}\right)>\sqrt{3}-4\)
\(\Rightarrow2.\sqrt{3}-5>\sqrt{3}-4\)
b) vì \(\sqrt{5}-\sqrt{12}< 0\), ta có:
\(5\sqrt{5}-2\sqrt{3}=4\sqrt{5}+\sqrt{5}-\sqrt{12}< 4\sqrt{5}< 4\sqrt{5}+6\)
Vậy \(5\sqrt{5}-2\sqrt{3}< 6+4\sqrt{5}\)
c)\(\sqrt{2}-\sqrt{6}=\sqrt{2}.\left(\sqrt{1}-\sqrt{3}\right)>\left(1-\sqrt{3}\right)\)
Vậy \(\sqrt{2}-\sqrt{6}>1-\sqrt{3}\)
So sánh :
1. 1- căn3 và căn2 - căn 6
2. căn của (4 + căn7 ) - căn của ( 4- căn7 ) - căn2 và 0
a,Ta có : \(1-\sqrt{3}\); \(\sqrt{2}-\sqrt{6}=\sqrt{2}\left(1-\sqrt{3}\right)\Rightarrow1-\sqrt{3}< \sqrt{2}\left(1-\sqrt{3}\right)\)
Vậy \(1-\sqrt{3}< \sqrt{2}-\sqrt{6}\)
b, Đặt A = \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)(*)
\(\sqrt{2}A=\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}-2\)
\(=\sqrt{7}+1-\sqrt{7}+1-2=0\Rightarrow A=0\)
Vậy (*) = 0
1:
Ta có: \(\sqrt{2}-\sqrt{6}\)
\(=\sqrt{2}\left(1-\sqrt{3}\right)< 0\)
\(\Leftrightarrow1-\sqrt{3}< \sqrt{2}-\sqrt{6}\)
2:
Ta có: \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)
\(=\dfrac{\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}-2}{\sqrt{2}}\)
\(=\dfrac{\sqrt{7}+1-\sqrt{7}+1-2}{\sqrt{2}}\)
=0
căn(10+căn3 *x)=2+căn 6