Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Khánh Châu
Xem chi tiết
Trần Thị Sương
Xem chi tiết
Lê Phương Thảo
20 tháng 3 2016 lúc 13:03

Đặt S=1/4+1/16+1/36+...+1/10000

        S= 1/4x(1+1/4+1/9+...+1/2500)

        S= 1/4x(1+1/2x2+1/3x3+...+1/50x50)

S< 1/4x(1+1/1x2+1/2x3+...1/49x50)

S< 1/4x(1+1-1/2+1/2-1/3+....+1/49-1/50)

S< 1/4x(1+1-1/50)

S< 1/4x(2-1/50)<2/4(2/4=1/2)

S< 1/2

Đỗ Đình Dũng
20 tháng 3 2016 lúc 12:59

S=\(\frac{1}{4}\)(1+\(\frac{1}{2^2}\)+\(\frac{1}{3^2}+...+\frac{1}{50^2}\)

S<\(\frac{1}{4}\)(1+\(\frac{1}{2.1}\)+\(\frac{1}{3.2}+...+\frac{1}{50.49}\))

S<\(\frac{1}{4}\)(1+1−\(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\))

S<\(\frac{1}{4}\)(2−\(\frac{1}{50}\))<\(\frac{2}{4}\)=\(\frac{1}{2}\)(đpcm)

Phạm Minh Ngọc
Xem chi tiết
Hoang Hung Quan
17 tháng 3 2017 lúc 22:18

Đặt \(A=\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+...+\dfrac{1}{10000}\)

Ta có:

\(A=\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+...+\dfrac{1}{10000}\)

\(\Rightarrow A=\dfrac{1}{4}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)\)

\(\Rightarrow A< \dfrac{1}{4}\left(1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\right)\)

\(\Rightarrow A< \dfrac{1}{4}\left(1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)

\(\Rightarrow A< \dfrac{1}{4}\left(1+1-\dfrac{1}{50}\right)\)

\(\Rightarrow A< \dfrac{1}{4}.\dfrac{99}{50}\)

\(\Rightarrow A< \dfrac{99}{200}< \dfrac{1}{2}\)

Vậy \(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+...+\dfrac{1}{10000}< \dfrac{1}{2}\) (Đpcm)

Bùi Ngọc Minh
17 tháng 3 2017 lúc 22:20

\(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+...+\dfrac{1}{10000}=\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)

\(=\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)< \dfrac{1}{4}\left(1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\right)=\dfrac{1}{4}\left(1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)=\dfrac{1}{4}\left(1+1-\dfrac{1}{50}\right)=\dfrac{1}{4}\left(2-\dfrac{1}{50}\right)< \dfrac{1}{2}\)

\(\Rightarrow\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+...+\dfrac{1}{10000}< \dfrac{1}{2}\)

Đặng Phạm Bằng
Xem chi tiết
The End
13 tháng 6 2015 lúc 16:13

\(\frac{1}{2^2}+\frac{1}{4^2}+.....+\frac{1}{100^2}=\frac{1}{2^2}\cdot\left(1+\frac{1}{2^2}+...+\frac{1}{50^2}\right)

Nguyễn Thị Thu Hải
Xem chi tiết
Jeong Soo In
26 tháng 3 2020 lúc 20:47

Đặt: \(A=\frac{1}{4}+\frac{1}{6}+\frac{1}{36}+\frac{1}{64}+...+\frac{1}{10000}< \frac{1}{2}\)

Ta có: \(A=\frac{1}{4}+\frac{1}{6}+\frac{1}{36}+\frac{1}{64}+...+\frac{1}{10000}\)

\(\Rightarrow A=\frac{1}{4}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)

\(\Rightarrow A< \frac{1}{4}\left(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\right)\)

\(\Rightarrow A< \frac{1}{4}\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)\)

\(\Rightarrow A< \frac{1}{4}\left(1+1-\frac{1}{50}\right)\)

\(\Rightarrow A< \frac{1}{4}.\frac{99}{50}\)

\(\Rightarrow A< \frac{99}{200}< \frac{1}{2}\)

Vậy: \(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+\frac{1}{64}+...+\frac{1}{10000}< \frac{1}{2}\left(đpcm\right)\)

Khách vãng lai đã xóa
Đồng Minh Phương
Xem chi tiết
Hoàng Nguyễn Văn
8 tháng 2 2020 lúc 12:18

Đặt    \(A=\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+...+\frac{1}{10000}\)

\(A=\frac{1}{4}+\frac{1}{4}\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)=\frac{1}{4}+\frac{1}{4}\cdot B\)

Ta có     \(\frac{1}{2^2}< \frac{1}{1\cdot2}=1-\frac{1}{2}\)

\(\frac{1}{3^2}< \frac{1}{2\cdot3}=\frac{1}{2}-\frac{1}{3}\)

\(...\)

\(\frac{1}{50^2}< \frac{1}{49\cdot50}=\frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}< 1\)

\(\Rightarrow A< \frac{1}{4}+\frac{1}{4}\cdot1=\frac{1}{2}\)

Khách vãng lai đã xóa
Tri Ton
Xem chi tiết
Nguyễn Hoàng Minh
13 tháng 10 2021 lúc 8:50

\(M=\dfrac{1}{2^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)

Ta thấy \(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2};\dfrac{1}{4^2}< \dfrac{1}{3\cdot4};...;\dfrac{1}{100^2}< \dfrac{1}{99\cdot100}\)

\(\Rightarrow M< \dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\\ =1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ =\left(1+\dfrac{1}{3}+...+\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)\\ =\left(1+\dfrac{1}{2}+...+\dfrac{1}{100}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)\\ =\left(1+\dfrac{1}{2}+...+\dfrac{1}{100}\right)-1-\dfrac{1}{2}-...-\dfrac{1}{50}\\ =\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}< \dfrac{1}{50}+\dfrac{1}{50}+...+\dfrac{1}{50}\left(50.số\right)=\dfrac{50}{50}=1\)

Vậy \(M< 1\)

Mình chỉ so sánh với 1 được thôi à :((

pham dan danh
Xem chi tiết
Nguyễn Như Quỳnh
Xem chi tiết
Nguyễn Thị Hoa Lan
7 tháng 9 2018 lúc 19:54

Bài này mình da làm roi dễ

Dương Huy Vũ
7 tháng 9 2018 lúc 19:59

S = \(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+......+\dfrac{1}{10000}\)

\(\Rightarrow S=\dfrac{1}{4.1}+\dfrac{1}{4.4}+\dfrac{1}{4.9}+.....+\dfrac{1}{4.2500}\)

\(\Rightarrow S=\dfrac{1}{4.\left(1+\dfrac{1}{4}+\dfrac{1}{9}+...+\dfrac{1}{2500}\right)}< \dfrac{1}{2}\)

\(\RightarrowĐPCM\)