Chương III : Phân số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Thu Hải

chứng tỏ rang: 1/4+1/16+1/36+1/64+...+1/10000<1/2

Jeong Soo In
26 tháng 3 2020 lúc 20:47

Đặt: \(A=\frac{1}{4}+\frac{1}{6}+\frac{1}{36}+\frac{1}{64}+...+\frac{1}{10000}< \frac{1}{2}\)

Ta có: \(A=\frac{1}{4}+\frac{1}{6}+\frac{1}{36}+\frac{1}{64}+...+\frac{1}{10000}\)

\(\Rightarrow A=\frac{1}{4}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)

\(\Rightarrow A< \frac{1}{4}\left(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\right)\)

\(\Rightarrow A< \frac{1}{4}\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)\)

\(\Rightarrow A< \frac{1}{4}\left(1+1-\frac{1}{50}\right)\)

\(\Rightarrow A< \frac{1}{4}.\frac{99}{50}\)

\(\Rightarrow A< \frac{99}{200}< \frac{1}{2}\)

Vậy: \(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+\frac{1}{64}+...+\frac{1}{10000}< \frac{1}{2}\left(đpcm\right)\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
jeff
Xem chi tiết
Dang Trung
Xem chi tiết
Ngânn Phạmm
Xem chi tiết
Nguyễn ngọc Khế Xanh
Xem chi tiết
Nguyễn ngọc Khế Xanh
Xem chi tiết
Nguyễn Thị Thu Hải
Xem chi tiết
Nguyễn Uyên
Xem chi tiết
Đoàn Đức Duy
Xem chi tiết
Koin Gaming
Xem chi tiết