Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thiên Yết
Xem chi tiết
Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 9 2020 lúc 20:23

\(0\le cos^2x\le1\Rightarrow2\le3-cos^2x\le3\)

\(\Rightarrow\frac{8}{3}\le y\le4\)

\(y_{min}=\frac{8}{3}\) khi \(cosx=0\)

\(y_{max}=4\) khi \(cos^2x=1\)

b/ \(0\le sin^23x\le1\Rightarrow1\le\sqrt{2-sin^23x}\le\sqrt{2}\)

\(\Rightarrow\frac{1}{\sqrt{2}}\le y\le1\)

\(y_{min}=\frac{1}{\sqrt{2}}\) khi \(sin3x=0\)

\(y_{max}=1\) khi \(sin^23x=1\)

c/ \(y=\sqrt{3}\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)+sin2x+1\)

\(=-\sqrt{3}\left(cos^2x-sin^2x\right)+sin2x+1\)

\(=-\sqrt{3}cos2x+sin2x+1\)

\(=2\left(\frac{1}{2}sin2x-\frac{\sqrt{3}}{2}cos2x\right)+1=2sin\left(2x-\frac{\pi}{3}\right)+1\)

Do \(-1\le sin\left(2x-\frac{\pi}{3}\right)\le1\Rightarrow-1\le y\le3\)

\(y_{min}=-1\) khi \(sin\left(2x-\frac{\pi}{3}\right)=-1\)

\(y_{max}=3\) khi \(sin\left(2x-\frac{\pi}{3}\right)=1\)

Vũ Thị Ngọc Chi
Xem chi tiết
oOo Sát thủ bóng đêm oOo
28 tháng 7 2018 lúc 16:27

tích mình với

ai tích mình

mình tích lại

thanks

Nguyễn Thế Công
14 tháng 2 2019 lúc 15:05

Tích mình đi mình tích lại

nguyen thi be
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 6 2021 lúc 20:53

a.

\(y'=\dfrac{2-x}{2x^2\sqrt{x-1}}=0\Rightarrow x=2\)

\(y\left(1\right)=0\) ; \(y\left(2\right)=\dfrac{1}{2}\) ; \(y\left(5\right)=\dfrac{2}{5}\)

\(\Rightarrow y_{min}=y\left(1\right)=0\)

\(y_{max}=y\left(2\right)=\dfrac{1}{2}\)

b.

\(y'=\dfrac{1-3x}{\sqrt{\left(x^2+1\right)^3}}< 0\) ; \(\forall x\in\left[1;3\right]\Rightarrow\) hàm nghịch biến trên [1;3]

\(\Rightarrow y_{max}=y\left(1\right)=\dfrac{4}{\sqrt{2}}=2\sqrt{2}\)

\(y_{min}=y\left(3\right)=\dfrac{6}{\sqrt{10}}=\dfrac{3\sqrt{10}}{5}\)

Nguyễn Việt Lâm
6 tháng 6 2021 lúc 20:58

c.

\(y=1-cos^2x-cosx+1=-cos^2x-cosx+2\)

Đặt \(cosx=t\Rightarrow t\in\left[-1;1\right]\)

\(y=f\left(t\right)=-t^2-t+2\)

\(f'\left(t\right)=-2t-1=0\Rightarrow t=-\dfrac{1}{2}\)

\(f\left(-1\right)=2\) ; \(f\left(1\right)=0\) ; \(f\left(-\dfrac{1}{2}\right)=\dfrac{9}{4}\)

\(\Rightarrow y_{min}=0\) ; \(y_{max}=\dfrac{9}{4}\)

d.

Đặt \(sinx=t\Rightarrow t\in\left[-1;1\right]\)

\(y=f\left(t\right)=t^3-3t^2+2\Rightarrow f'\left(t\right)=3t^2-6t=0\Rightarrow\left[{}\begin{matrix}t=0\\t=2\notin\left[-1;1\right]\end{matrix}\right.\)

\(f\left(-1\right)=-2\) ; \(f\left(1\right)=0\) ; \(f\left(0\right)=2\)

\(\Rightarrow y_{min}=-2\) ; \(y_{max}=2\)

Nguyễn Khánh Linh
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 9 2020 lúc 21:54

6.

\(y=1-sin^2x+2sinx+2=-sin^2x+2sinx+3\)

\(y=-\left(sinx-1\right)^2+4\le4\)

\(y_{max}=4\) khi \(sinx=1\)

\(y=\left(sinx+1\right)\left(3-sinx\right)\ge0\)

\(y_{min}=0\) khi \(sinx=-1\)

7.

\(y=sin^4x-2\left(1-sin^2x\right)+1=sin^4x+2sin^2x-1\)

Do \(0\le sin^2x\le1\Rightarrow-1\le y\le2\)

\(y_{min}=-1\) khi \(sin^2x=0\)

\(y_{max}=2\) khi \(sin^2x=1\)

Nguyễn Việt Lâm
18 tháng 9 2020 lúc 21:56

8.

\(y=\frac{1}{3}+\frac{4}{3}cos^2x\)

Do \(0\le cos^2x\le1\Rightarrow\frac{1}{3}\le y\le\frac{5}{3}\)

\(y_{min}=\frac{1}{3}\) khi \(cos^2x=0\)

\(y_{max}=\frac{5}{3}\) khi \(cos^2x=1\)

9.

\(-1\le sin2x\le1\Rightarrow0\le1+sin2x\le2\)

\(\Rightarrow0\le y\le\sqrt{2}\)

\(y_{min}=0\) khi \(sin2x=-1\)

\(y_{max}=\sqrt{2}\) khi \(sin2x=1\)

Nguyễn Việt Lâm
18 tháng 9 2020 lúc 22:00

10.

\(y=3-\left(2sinx.cosx\right)^2=3-sin^22x\)

Do \(0\le sin^22x\le1\Rightarrow2\le y\le3\)

\(y_{min}=2\) khi \(sin^22x=1\)

\(y_{max}=3\) khi \(sin2x=0\)

12.

\(y=8+\frac{1}{4}\left(2sinx.cosx\right)=8+\frac{1}{4}sin2x\)

Do \(-1\le sin2x\le1\Rightarrow\frac{31}{4}\le y\le\frac{33}{4}\)

\(y_{min}=\frac{31}{4}\) khi \(sin2x=-1\)

\(y_{max}=\frac{33}{4}\) khi \(sin2x=1\)

13.

Về bản chất giống hệt câu 13, chỉ cần thay chữ sin bằng chữ cos

nguyễn ngọc thúy vi
Xem chi tiết
Đặng Quốc Khánh
Xem chi tiết
Nguyễn Hoàng Minh
8 tháng 8 2021 lúc 9:26

a) \(A=\sqrt{x-2}+\sqrt{6-x}\)

\(\Rightarrow A^2=x-2+6-x+2\sqrt{\left(x-2\right)\left(6-x\right)}\)

Ta có \(\sqrt{\left(x-2\right)\left(6-x\right)}\ge0,\forall x\)

Do đó \(A^2=4+2\sqrt{\left(x-2\right)\left(6-x\right)}\ge4\)

Mà A không âm \(\Leftrightarrow A\ge2\)

Dấu "=" \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)

Áp dụng BĐT Bunhiacopxky:

\(A^2=\left(\sqrt{x-2}+\sqrt{6-x}\right)^2\le\left(x-2+6-x\right)\left(1+1\right)=4\cdot2=8\)

\(\Leftrightarrow A\le\sqrt{8}\)

Dấu "=" \(\Leftrightarrow x-2=6-x\Leftrightarrow x=4\)

Mấy bài còn lại y chang nha 

Tick hộ nha

hanvu
Xem chi tiết
ST
13 tháng 7 2019 lúc 18:52

ĐKXĐ: \(x\ge1;y\ge25\)

\(D=\frac{1}{x}\sqrt{\frac{x-1}{\left(x-2\right)^2+25}}+\frac{1}{y}\sqrt{\frac{y-25}{\left(y-50\right)^2+1}}\)

Vì x>=1,y>=25 => x-1>=0,y-25>=0 

=> D >= 0

Dấu "=" xảy ra <=> x=1,y=25

Vậy MinD=0 khi x=1,y=25

Ta có: \(\left(x-2\right)^2+25\ge25;\left(y-50\right)^2+1\ge1\)

=>\(\frac{1}{x}\sqrt{\frac{x-1}{\left(x-2\right)^2+25}}\le\frac{1}{x}\sqrt{\frac{x-1}{25}};\frac{1}{y}\sqrt{\frac{y-25}{\left(y-50\right)^2+1}}\le\frac{1}{y}\sqrt{y-25}\)

=>\(D\le\frac{1}{x}\sqrt{\frac{x-1}{25}}+\frac{1}{y}\sqrt{y-25}\)

Vì x>=1 => x-1>=0. Áp dụng bđt cosi với 2 số dương x-1 và 1 ta có:

\(\sqrt{x-1}=\sqrt{\left(x-1\right).1}\le\frac{x-1+1}{2}=\frac{x}{2}\)

=>\(\frac{1}{x}\sqrt{\frac{x-1}{25}}\le\frac{1}{x}\cdot\frac{x}{2}\cdot\frac{1}{\sqrt{25}}=\frac{1}{10}\)

Vì y>=25 => y-25>=0. ÁP dụng bđt cô si cho 2 số dương 25 và y-25 ta có:

\(\sqrt{y-25}=\frac{\sqrt{25\left(y-25\right)}}{5}\le\frac{25+y-25}{2.5}=\frac{y}{10}\)

=>\(\frac{1}{y}\sqrt{y-25}=\frac{1}{y}\cdot\frac{y}{10}=\frac{1}{10}\)

Suy ra \(D\le\frac{1}{10}+\frac{1}{10}=\frac{1}{5}\)

Dấu "=" xảy ra <=> x=2,y=50

Vậy MaxD = 1/5 khi x=2,y=50

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 7 2020 lúc 19:50

a/

Đặt \(x+\frac{\pi}{3}=a\Rightarrow x=a-\frac{\pi}{3}\)

Pt trở thành:

\(cos^2a+4cos\left(\frac{\pi}{6}-a+\frac{\pi}{3}\right)=4\)

\(\Leftrightarrow cos^2a+4cos\left(\frac{\pi}{2}-a\right)-4=0\)

\(\Leftrightarrow cos^2a+4sina-4=0\)

\(\Leftrightarrow1-sin^2a+4sina-4=0\)

\(\Leftrightarrow-sin^2a+4sina-3=0\)

\(\Rightarrow\left[{}\begin{matrix}sina=1\\sina=3\left(l\right)\end{matrix}\right.\)

\(\Rightarrow sin\left(x+\frac{\pi}{3}\right)=1\)

\(\Rightarrow x+\frac{\pi}{3}=\frac{\pi}{2}+k2\pi\)

\(\Rightarrow x=\frac{\pi}{6}+k2\pi\)

Nguyễn Việt Lâm
24 tháng 7 2020 lúc 19:54

b/

Đặt \(x+\frac{\pi}{6}=a\Rightarrow x=a-\frac{\pi}{6}\)

Pt trở thành:

\(5cos2a=4sin\left(\frac{5\pi}{6}-a+\frac{\pi}{6}\right)-9\)

\(\Leftrightarrow5cos2x=4sin\left(\pi-a\right)-9\)

\(\Leftrightarrow5\left(1-2sin^2a\right)=4sina-9\)

\(\Leftrightarrow10sin^2a+4sina-14=0\)

\(\Rightarrow\left[{}\begin{matrix}sina=1\\sina=-\frac{7}{5}< -1\left(l\right)\end{matrix}\right.\)

\(\Rightarrow sin\left(x+\frac{\pi}{6}\right)=1\)

\(\Rightarrow x+\frac{\pi}{6}=\frac{\pi}{2}+k2\pi\)

\(\Rightarrow x=\frac{\pi}{3}+k2\pi\)

Nguyễn Việt Lâm
24 tháng 7 2020 lúc 20:00

c/

\(\Leftrightarrow1-cos2x+\sqrt{3}sin2x+2\sqrt{3}sinx+2cosx=2\)

\(\Leftrightarrow\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x+2\left(\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx\right)=\frac{1}{2}\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{6}\right)+2sin\left(x+\frac{\pi}{6}\right)=\frac{1}{2}\)

\(\Leftrightarrow cos\left(2x+\frac{\pi}{3}\right)+2sin\left(x+\frac{\pi}{6}\right)-\frac{1}{2}=0\)

\(\Leftrightarrow cos2\left(x+\frac{\pi}{6}\right)+2sin\left(x+\frac{\pi}{6}\right)-\frac{1}{2}=0\)

\(\Leftrightarrow1-2sin^2\left(x+\frac{\pi}{6}\right)+2sin\left(x+\frac{\pi}{6}\right)-\frac{1}{2}=0\)

\(\Leftrightarrow-2sin^2\left(x+\frac{\pi}{6}\right)+2sin\left(x+\frac{\pi}{6}\right)+\frac{1}{2}=0\)

\(\Rightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{6}\right)=\frac{1+\sqrt{2}}{2}\left(l\right)\\sin\left(x+\frac{\pi}{6}\right)=\frac{1-\sqrt{2}}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{\pi}{6}=arcsin\left(\frac{1-\sqrt{2}}{2}\right)+k2\pi\\x+\frac{\pi}{6}=\pi-arcsin\left(\frac{1-\sqrt{2}}{2}\right)+k2\pi\end{matrix}\right.\)

\(\Rightarrow x=...\)