chứng minh
s=1/31+1/32+...+1/60 không thộc N
1. Chứng tỏ :
a. 1/31+1/32+..+1/60 không thuộc Z
giup minh nhé các bạn!
(1 / 31 + ... + 1 / 40) + (1 / 41 + ... + 1/ 50) + (1 / 51 + ... + 1 / 60) <
10 / 31 + 10 / 41 + 10 / 51 < 10 / 30 + 10 / 40 + 10 / 50 = 1 / 3 + 1 / 4 + 1 / 5 =
7 / 12 + 1 / 5 < 3 / 5 + 1 / 5 = 4 / 5
tương tự
S > 10 / 40 + 10 / 50 + 10 / 60 = 1 / 4 + 1 / 5 + 1 / 6 = 5 / 12 + 1 / 5 > 2 / 5 + 1 / 5 = 3 / 5
=> 3 / 5 < S < 4 / 5
Vì 3 < S < 4 => S rỗng => S không thuộc nguyên
(Toán 6 nâng cao)
Cho B = \(\dfrac{1}{31}\) + \(\dfrac{1}{32}+\dfrac{1}{33}+...+\dfrac{1}{60}\) . Chứng minh B không phải là số tự nhiên
Giải nhanh ik,, mình xin đấy gấp lắm zồiii
Do mọi số hạng của B đều lớn hơn 0 nên \(B>0\)
Lại có:
\(B=\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+...+\dfrac{1}{60}\) (30 số hạng)
\(\Rightarrow B< \dfrac{1}{31}+\dfrac{1}{31}+\dfrac{1}{31}+...+\dfrac{1}{31}\) (30 số hạng)
\(\Rightarrow B< \dfrac{1}{31}.30\)
\(\Rightarrow B< \dfrac{30}{31}< 1\)
Vậy \(0< B< 1\)
\(\Rightarrow B\) nằm giữa 2 số tự nhiên liên tiếp nên B không phải là số tự nhiên
Chứng minh rằng:1/31+1/32+...+1/60<4/5
đặt A = 1/31 + 1/32 + ... + 1/60
Tách A thành 3 nhóm ta được :
A = ( 1/31 + 1/32 + ... + 1/40 ) + ( 1/41 + 1/42 + ... + 1/50 ) + ( 1/51 + 1/52 + ... + 1/60 )
A < 1/30 x 10 + 1/40 x 10 + 1/50 x 10
A < 1/3 + 1/4 + 1/5 = 47/60 < 48/60 = 4/5 ( đpcm )
Ta có: S=(1/31+1/32+...+1/40)+(1/41+1/42+...+1/50)+(1/51+1/52+...+1/60)
Mà: 1/31+1/32+...+1/40<1/31.10=10/30=1/3 (gồm 10 số hạng)
=> S<4/5
Chứng tỏ 1/31+1/32+1/33+...+1/60<1/2
Cho tổng S=1/31 +1/32 +1/33 +....+ 1/60 chứng tỏ s< 4/5
Giải:
S=\(\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+...+\dfrac{1}{60}\)
Có 30 phân số; chia làm 3 nhóm
S<\(\left(\dfrac{1}{30}+...+\dfrac{1}{30}\right)+\left(\dfrac{1}{40}+...+\dfrac{1}{40}\right)+\left(\dfrac{1}{50}+...+\dfrac{1}{50}\right)\)
S<\(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}\)
S<\(\dfrac{47}{60}< \dfrac{48}{60}=\dfrac{4}{5}\)
⇒S<\(\dfrac{4}{5}\) (đpcm)
Chúc bạn học tốt!
Cho S = 1/31+1/32+1/33+.......+1/60.Chứng minh 3/5 < S < 4/
S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)
Mà : (1/31+1/32+1/33+...+1/40) > 1/40 x 10 = 1/4 (gồm 10 số hạng)
Tương tự : (1/41 + 1/42 + ...+ 1/50) > 1/5 ; (1/51 + 1/52+...+1/59+1/60) > 1/6
S > 1/4 + 1/5 + 1/6.
Trong khi đó (1/4 + 1/5 + 1/6) > 3/5
=>S > 3/5 (1)
S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)
Mà : (1/31+1/32+1/33+...+1/40) < 1/31 x 10 = 10/30 = 1/3 (gồm 10 số hạng)
=> S < 4/5 (2)
Từ (1) và (2) => 3/5 <S<4/5 Chúc bạn học tốt !
Cho S=1/31 + 1/32 + 1/33...+1/60.Chứng minh:S<4/5
Cho S=1/31+1/32+1/33+...+1/60 Chứng minh S<4/5("/" là phần)
S=(1/31+1/32+1/33+...+1/40)+(1/41+1/42+1/43+...+1/50)+(1/51+1/52+1/53+...+1/60)"10 sống hạng mỗi ngoặc"
S<1/30 x 10+1/40 x 10+1/50 x 10
S<1/3+1/4+1/5=47/60<48/60=4/5
Học tốt~
cho M= 1/31+1/32+1/33+...+1/60
Chứng minh rằng3/5<M<4/5
Cho S=3/1x4+3/4x7+3/7x10+...+3/n(n+3)
Chứng minh rằng S<1