\(\sin3x=2\sin^3x\)
a) sin4x-√3cos4x=√2
b) √3cos3x +sin3x=√2
c) cos7xcos5x-√3sin2x=1-sin7xsin5x
d) sin3x-sin=sin2x
e) sin^2x +sin^2 2x + sin^2 3x =3/2
sinx - sin3x + sin5x =0
sin2x + sin22x = sin23x
cos3x - cos5x = sinx
sin3x + sin5x + sin7x = 0
sinx + sin2x + sin3x - cosx - cos2x - cos3x = 0
1,Giải phương trình:
a,\(cos^3x+sin^3x=cos2x\)
b,\(cos^3x+sin^3x=2sin2x+sinx+cosx\)
c,\(2cos^3x=sin3x\)
d,\(cos^2x-\sqrt{3}sin2x=1+sin^2x\)
e,\(cos^3x+sin^3x=2\left(cos^5x+sin^5x\right)\)
a, (sinx + cosx)(1 - sinx . cosx) = (cosx - sinx)(cosx + sinx)
⇔ \(\left[{}\begin{matrix}sinx+cosx=0\\cosx-sinx=1-sinx.cosx\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}sinx+cosx=0\\cosx+sinx.cosx-1-sinx=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}sinx+cosx=0\\\left(cosx-1\right)\left(sinx+1\right)=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}sin\left(x+\dfrac{\pi}{4}\right)=0\\cosx=1\\sinx=-1\end{matrix}\right.\)
b, (sinx + cosx)(1 - sinx . cosx) = 2sin2x + sinx + cosx
⇔ (sinx + cosx)(1 - sinx.cosx - 1) = 2sin2x
⇔ (sinx + cosx).(- sinx . cosx) = 2sin2x
⇔ 4sin2x + (sinx + cosx) . sin2x = 0
⇔ \(\left[{}\begin{matrix}sin2x=0\\\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)+4=0\end{matrix}\right.\)
⇔ sin2x = 0
c, 2cos3x = sin3x
⇔ 2cos3x = 3sinx - 4sin3x
⇔ 4sin3x + 2cos3x - 3sinx(sin2x + cos2x) = 0
⇔ sin3x + 2cos3x - 3sinx.cos2x = 0
Xét cosx = 0 : thay vào phương trình ta được sinx = 0. Không có cung x nào có cả cos và sin = 0 nên cosx = 0 không thỏa mãn phương trình
Xét cosx ≠ 0 chia cả 2 vế cho cos3x ta được :
tan3x + 2 - 3tanx = 0
⇔ \(\left[{}\begin{matrix}tanx=1\\tanx=-2\end{matrix}\right.\)
d, cos2x - \(\sqrt{3}sin2x\) = 1 + sin2x
⇔ cos2x - sin2x - \(\sqrt{3}sin2x\) = 1
⇔ cos2x - \(\sqrt{3}sin2x\) = 1
⇔ \(2cos\left(2x+\dfrac{\pi}{3}\right)=1\)
⇔ \(cos\left(2x+\dfrac{\pi}{3}\right)=\dfrac{1}{2}=cos\dfrac{\pi}{3}\)
e, cos3x + sin3x = 2cos5x + 2sin5x
⇔ cos3x (1 - 2cos2x) + sin3x (1 - 2sin2x) = 0
⇔ cos3x . (- cos2x) + sin3x . cos2x = 0
⇔ \(\left[{}\begin{matrix}sin^3x=cos^3x\\cos2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}sinx=cosx\\cos2x=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}sin\left(x-\dfrac{\pi}{4}\right)=0\\cos2x=0\end{matrix}\right.\)
1) cos3x - cos4x + cos5x =0
2) sin3x + cos2x = 1 + 2sinx.cos2x
3) cos2x - cosx = 2 sin\(^2\)\(\dfrac{3x}{2}\)
4) cos\(^2\)2x + cos\(^2\)3x = sin\(^2\)x
5) sin3x.sin5x - cos4x.cos6x = 0
2.
\(sin3x+cos2x=1+2sinx.cos2x\)
\(\Leftrightarrow sin3x+cos2x=1+sin3x-sinx\)
\(\Leftrightarrow cos2x+sinx-1=0\)
\(\Leftrightarrow-2sin^2x+sinx=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)
1.
\(cos3x-cos4x+cos5x=0\)
\(\Leftrightarrow cos3x+cos5x-cos4x=0\)
\(\Leftrightarrow2cos4x.cosx-cos4x=0\)
\(\Leftrightarrow\left(2cosx-1\right)cos4x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=\dfrac{1}{2}\\cos4x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm\dfrac{\pi}{3}+k2\pi\\4x=\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm\dfrac{\pi}{3}+k2\pi\\x=\dfrac{\pi}{8}+\dfrac{k\pi}{4}\end{matrix}\right.\)
3.
\(cos2x-cosx=2sin^2\dfrac{3x}{2}\)
\(\Leftrightarrow2sin\dfrac{3x}{2}.sin\dfrac{x}{2}+2sin^2\dfrac{3x}{2}=0\)
\(\Leftrightarrow2sin\dfrac{3x}{2}.\left(sin\dfrac{x}{2}+sin\dfrac{3x}{2}\right)=0\)
\(\Leftrightarrow sin\dfrac{3x}{2}.sinx.cos\dfrac{x}{2}=0\)
Đến đây dễ rồi tự làm tiếp nha.
\(\cos3x\cos^3x-\sin3x\sin^3x=\frac{2+3\sqrt{2}}{8}\)
a/\(\sin3x+\cos2x=1+2\sin x\cos2x\)
b/\(\sin^3x+\cos^3x=2\left(\sin^5x+\cos^5x\right)\)
c/\(\dfrac{\tan x}{\sin x}-\dfrac{\sin x}{\cos x}=\dfrac{\sqrt{2}}{2}\)
d/\(\dfrac{\cos x\left(\cos x+2\sin x\right)+3\sin x\left(\sin x+\sqrt{2}\right)}{\sin2x-1}=1\)
e/\(\sin^2x+\sin^23x-2\cos^22x=0\)
f/\(\dfrac{\tan x-\sin x}{\sin^3x}=\dfrac{1}{\cos x}\)
g/\(\sin2x\left(\cos x+\tan2x\right)=4\cos^2x\)
h/\(\sin^2x+\sin^23x=\cos^2x+\cos^23x\)
k/\(4\sin2x=\dfrac{\cos^2x-\sin^2x}{\cos^6x+\sin^6x}\)
mọi người giải giúp em với em đang cần gấp ạ
Tìm họ nguyên hàm của các hàm số lượng giác sau :
a) \(f\left(x\right)=\sin^3x.\sin3x\)
b) \(f\left(x\right)=\sin^3x.\cos3x+\cos^3x.\sin3x\)
a) \(f\left(x\right)=\sin^3x.\sin3x=\sin3x\left(\frac{3\sin x-\sin3x}{4}\right)=\frac{3}{4}\sin3x.\sin x-\frac{1}{4}\sin^23x\)
= \(\frac{3}{8}\left(\cos2x-\cos4x\right)-\frac{1}{8}\left(1-\cos6x\right)=\frac{3}{8}\cos2x+\frac{1}{8}\cos6x-\frac{3}{8}\cos4x-\frac{1}{8}\)
Do đó :
\(I=\int f\left(x\right)dx=\int\left(\frac{3}{8}\cos2x+\frac{1}{8}\cos6x-\frac{3}{8}\cos4x-\frac{1}{8}\right)dx=\frac{3}{16}\sin2x+\frac{1}{48}\sin6x-\frac{3}{32}\sin4x-\frac{1}{8}x+C\)
b) Ta biến đổi :
\(f\left(x\right)=\sin^3x.\cos3x+\cos^3x.\sin3x=\cos3x\left(\frac{3\sin x-\sin3x}{4}\right)+\sin3x\left(\frac{\cos3x+3\cos x}{4}\right)\)
\(=\frac{3}{4}\left(\cos3x\sin x+\sin3x\cos x\right)=\frac{3}{4}\sin4x\)
Do đó : \(I=\int f\left(x\right)dx=\frac{3}{4}\int\sin4xdx=-\frac{3}{16}\cos4x+C\)
\(\frac{cos^3x-cos3x}{cosx}+\frac{sin^3x+sin3x}{sinx}=3\)
\(\frac{cos^3x-cos3x}{cosx}+\frac{sin^3x+sin3x}{sinx}=cos^2x-\frac{cos3x}{cosx}+sin^2x+\frac{sin3x}{sinx}\)
\(=1+\frac{sin3x}{sinx}-\frac{cos3x}{cosx}=1+\frac{sin3x.cosx-cos3x.sinx}{sinx.cosx}\)
\(=1+\frac{sin\left(3x-x\right)}{\frac{1}{2}sin2x}=1+\frac{2sin2x}{sin2x}=1+2=3\)
Giải phương trình: \(\sin^3x\cos3x+\cos^3x\sin3x=-\frac{3}{4}\)