Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nhật Minh Nguyễn
Xem chi tiết
Minh Hiếu
25 tháng 9 2023 lúc 18:49

a) \(\sqrt{x-1}+\sqrt{x+3}+2\sqrt{\left(x+3\right)\left(x-1\right)}=-\left(x+3+x-1-6\right)\)\(\left(Đk:x\ge1\right)\)

\(\left(\sqrt{x-1}+\sqrt{x+3}\right)^2+\sqrt{x-1}+\sqrt{x-3}-6=0\)

\(\left(\sqrt{x-1}+\sqrt{x+3}+3\right)\left(\sqrt{x-1}+\sqrt{x+3}-2\right)=0\)

Đến đây em xét các trường hợp rồi bình phương lên là được nha

b) \(\sqrt{3x-2}+\sqrt{x-1}=3x-2+x-1-6+2\sqrt{\left(3x-2\right)\left(x-1\right)}\left(Đk:x\ge1\right)\)

\(\left(\sqrt{3x-2}+\sqrt{x-1}\right)^2-\left(\sqrt{3x-2}+\sqrt{x-1}\right)-6=0\)

\(\left(\sqrt{3x-2}+\sqrt{x-1}-3\right)\left(\sqrt{3x-2}+\sqrt{x-1}+2\right)=0\)

Đến đây em xét các trường hợp rồi bình phương lên là được nha

Akai Haruma
25 tháng 9 2023 lúc 19:25

a/ ĐKXĐ: $x\geq 1$

Đặt $\sqrt{x-1}=a; \sqrt{x+3}=b$ thì pt trở thành:

$a+b+2ab=6-(a^2+b^2)$

$\Leftrightarrow a^2+b^2+2ab+a+b-6=0$

$\Leftrightarrow (a+b)^2+(a+b)-6=0$

$\Leftrightarrow (a+b-2)(a+b+3)=0$

Hiển nhiên do $a\geq 0; b\geq 0$ nên $a+b+3>0$. Do đó $a+b-2=0$

$\Leftrightarrow a+b=2$

Mà $b^2-a^2=(x+3)-(x-1)=4$

$\Leftrightarrow (b-a)(b+a)=4\Leftrightarrow (b-a).2=4\Leftrightarrow b-a=2$

$\Rightarrow \sqrt{x+3}=b=(a+b+b-a):2=(2+2):2=2$

$\Leftrightarrow x=1$ (tm)

Akai Haruma
25 tháng 9 2023 lúc 19:33

b/

ĐKXĐ: $x\geq 1$

Đặt $\sqrt{3x-2}=a; \sqrt{x-1}=b(a,b\geq 0)$. Khi đó pt đã cho trở thành:

$a+b=a^2+b^2-6+2ab$

$\Leftrightarrow a^2+b^2+2ab-(a+b)-6=0$

$\Leftrightarrow (a+b)^2-(a+b)-6=0$

$\Leftrightarrow (a+b+2)(a+b-3)=0$

Hiển nhiên $a+b+2>0$ với mọi $a,b\geq 0$

Do đó $a+b-3=0\Leftrightarrow a+b=3$

$\Leftrightarrow b=3-a$.

Ta thấy $a^2-3b^2=1$. Thay $b=3-a$ vô thì:

$a^2-3(3-a)^2=1$

$\Leftrightarrow (a-2)(a-7)=0$

$\Leftrightarrow a=2$ hoặc $a=7$

Vì $a+b=3$ mà $a,b>0$ nên $a,b<3$. Do đó $a=2$

$\Leftrightarrow \sqrt{3x-2}=2$ 

$\Leftrightarrow x=2$ 

Minh Nguyet Truong
Xem chi tiết
Trịnh Minh Tuấn
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 9 2021 lúc 20:27

a: Ta có: \(\sqrt{\sqrt{x}+3}=4\)

\(\Leftrightarrow\sqrt{x}+3=16\)

\(\Leftrightarrow\sqrt{x}=13\)

hay x=169

b: Ta có: \(\sqrt{x+3}=\sqrt{1-5x}\)

\(\Leftrightarrow x+3=1-5x\)

\(\Leftrightarrow6x=-2\)

hay \(x=-\dfrac{1}{3}\left(nhận\right)\)

Lấp La Lấp Lánh
23 tháng 9 2021 lúc 20:30

a) \(\sqrt{3+\sqrt{x}}=4\left(đk:x\ge0\right)\)

\(\Leftrightarrow3+\sqrt{x}=16\Leftrightarrow\sqrt{x}=13\Leftrightarrow x=169\left(tm\right)\)

b) \(\sqrt{x+3}=\sqrt{1-5x}\left(đk:\dfrac{1}{5}\ge x\ge-3\right)\)

\(\Leftrightarrow x+3=1-5x\Leftrightarrow6x=-2\Leftrightarrow x=-\dfrac{1}{3}\left(ktm\right)\)

Vậy \(S=\varnothing\)

c) \(\sqrt{x^2+6x+9}=3x-1\left(đk:x\ge\dfrac{1}{3}\right)\)

\(\Leftrightarrow\sqrt{\left(x+3\right)^2}=3x-1\)

\(\Leftrightarrow\left|x+3\right|=3x-1\)

\(\Leftrightarrow x+3=3x-1\Leftrightarrow2x=4\Leftrightarrow x=2\left(tm\right)\)

hưng phúc
23 tháng 9 2021 lúc 20:35

a. \(\sqrt{3+\sqrt{x}}=4\)      ĐKXĐ: \(x\ge0\)

<=> 3 + \(\sqrt{x}\) = 42

<=> \(3+\sqrt{x}=16\)

<=> \(\sqrt{x}=16-3\)

<=> \(\sqrt{x}=13\)

<=> x = 132

<=> x = 169 (TM)

b. \(\sqrt{x+3}=\sqrt{1-5x}\)           ĐKXĐ: \(x\ge\dfrac{1}{5}\)

<=> \(\left(\sqrt{x+3}\right)^2=\left(\sqrt{1-5x}\right)^2\)

<=> \(|x+3|=|1-5x|\)

<=> \(\left[{}\begin{matrix}x+3=1-5x\\-\left(x+3\right)=-\left(1-5x\right)\\x+3=-\left(1-5x\right)\\-\left(x+3\right)=1-5x\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=\dfrac{-1}{3}\\x=\dfrac{-1}{3}\\x=1\\x=1\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=\dfrac{-1}{3}\\x=1\end{matrix}\right.\)

c. \(\sqrt{x^2+6x+9}=3x-1\)

<=> \(\sqrt{\left(x+3\right)^2}=3x-1\)

<=> \(|x+3|=3x-1\)

<=> \(\left[{}\begin{matrix}x+3=-\left(3x-1\right)\\x+3=3x-1\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x+3=-3x=1\\-2x=-4\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}4x=-2\\x=2\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=2\end{matrix}\right.\)

tranthuylinh
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 8 2021 lúc 0:04

a: Ta có: \(P=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{x-1}\)

\(=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

b: Thay \(x=\dfrac{1}{4}\) vào P, ta được:

\(P=\left(\dfrac{1}{2}-1\right):\left(\dfrac{1}{2}+1\right)=\dfrac{-1}{2}:\dfrac{3}{2}=-\dfrac{1}{3}\)

c: Ta có: \(P< \dfrac{1}{2}\)

\(\Leftrightarrow P-\dfrac{1}{2}< 0\)

\(\Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{1}{2}< 0\)

\(\Leftrightarrow\dfrac{2\sqrt{x}-2-\sqrt{x}-1}{2\left(\sqrt{x}+1\right)}< 0\)

\(\Leftrightarrow\sqrt{x}< 3\)

hay x<9

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne1\end{matrix}\right.\)

2012 SANG
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 8 2023 lúc 15:32

6: \(\Leftrightarrow2x^2+3x+9+\sqrt{2x^2+3x+9}-42=0\)

Đặt \(\sqrt{2x^2+3x+9}=a\left(a>=0\right)\)

Phương trình sẽ trở thành là: a^2+a-42=0

=>(a+7)(a-6)=0

=>a=-7(loại) hoặc a=6(nhận)

=>2x^2+3x+9=36

=>2x^2+3x-27=0

=>2x^2+9x-6x-27=0

=>(2x+9)(x-3)=0

=>x=3 hoặc x=-9/2

8: \(\Leftrightarrow x-1-2\sqrt{x-1}+1+y-2-4\sqrt{y-2}+4+z-3-6\sqrt{z-3}+9=0\)
=>\(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)

=>\(\left\{{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-2=4\\z-3=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=6\\z=12\end{matrix}\right.\)

Hải Nam Xiumin
Xem chi tiết
Nguyễn Thị Anh
6 tháng 7 2016 lúc 10:32

điều kiện \(x\ge0\)và x khác 1/4

Q= \(\frac{3\sqrt{x}+2}{2\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+4}-\frac{x-6\sqrt{x}+5}{2x+7\sqrt{x}-4}=\frac{3x+14\sqrt{x}+8+2x-3\sqrt{x}+1-x+6\sqrt{x}-5}{2x+7\sqrt{x}-4}\)

=\(\frac{4x+17\sqrt{x}+4}{2x+7\sqrt{x}-4}\)

đề Q>1/2 thì \(\frac{4x+17\sqrt{x}+4}{2x+7\sqrt{x}-4}>\frac{1}{2}\)

<=> \(8x+34\sqrt{x}+8>2x+7\sqrt{x}-4\)<=> \(6x+27\sqrt{x}+12>0\) với mọi x>=0

vậy Q>1/2 khi x>=0 và x khác 1/4

LuKenz
Xem chi tiết
long
Xem chi tiết
phương thảo nguyễn thị
9 tháng 8 2017 lúc 16:14

đè hinh như là 6\(\sqrt{x}\) nhi bạn

LuKenz
Xem chi tiết