Viết các biểu thức sau dưới dạng tổng
\(\text{(a^2-2a+3)(a^2+2a-3)}\)
Viết các biểu thức sau dưới dạng tổng
a) (a2+2a+3)(a2+2a-3)
b) (a2+2a+3)(a2-2a-3)
a) Áp dụng hằng đẳng thức : \(a^2-b^2+\left(a-b\right)\left(a+b\right)\)
Ta có ; \(\left(a^2+2a+3\right)\left(a^2+2a-3\right)\)
\(=\left[\left(a^2+2a\right)+3\right]\left[\left(a^2+2a\right)-3\right]\)
\(=\left(a^2+2a\right)^2-3^2\)
\(=\left(a^2+2a\right)^2-9\)
viết các biểu thức sau dưới dạng tổng áp dụng hằng đẳng thức đáng nhớ
(3+xy^2)^2
(a-b^2)(â+b^2)
(a^2+2a+3)(a^2+2a-3)
(a^2+2a+3)(a^2-2a-3)
giúp mik nha các bn
viết các biểu thức sau theo dạng tổng
(a^2+2a+3)(a^2+2a-3)
\(\left(a^2+2a+3\right)\left(a^2+2a-3\right)\)
\(=\left[\left(a^2+2a\right)+3\right]\left[\left(a^2+2a\right)-3\right]\)
\(=\left(a^2+2a\right)^2-3^2\)
\(=a^4+4a^3+4a^2-9\)
Viết biểu thức dưới dạng tổng:
a) (a^2 + 2a + 3).(a^2 - 2a - 3)
b) (-a^2 - 2a + 3)^2
c) (x-y-z)^2
d) (x+y+z).(x-y-z)
Viết biểu thức dưới dạng tích:
(x^2+x-1)^2-(x^2 + 2x +3)^2
a: \(\left(a^2+2a+3\right)\left(a^2-2a-3\right)\)
\(=\left[a^2+\left(2a+3\right)\right]\left[a^2-\left(2a+3\right)\right]\)
\(=\left(a^2\right)^2-\left(2a+3\right)^2\)
\(=a^4-\left(2a+3\right)^2\)
b: \(\left(-a^2-2a+3\right)^2\)
\(=\left(a^2+2a-3\right)^2\)
\(=a^4+4a^2+9+4a^3-18a-6a^2\)
\(=a^4+4a^3-2a^2-18a+9\)
c: \(\left(x-y-z\right)^2\)
\(=x^2-2x\left(y+z\right)+\left(y+z\right)^2\)
\(=x^2-2xy-2xz+y^2+2yz+z^2\)
d: \(\left(x+y+z\right)\left(x-y-z\right)\)
\(=x^2-\left(y+z\right)^2\)
\(=x^2-y^2-2yz-z^2\)
viết biểu thức sau dưới dạng tổng
\(\left(a^2+2a+3\right)\times\left(a^2+2a-3\right)\)
Viết các biểu thức sau dưới dạng tổng:
a..(-a\(^2\)-2a+3)(-a\(^2\)-2a+3)
b..(a\(^2\)+2a+3)(a\(^2\)-2a+3)
c.. (a\(^2\)2+2a)(2a-a\(^2\))
1.Vt biểu thức dưới dạng tổng
a, (x+y+z)^2
b, (x-y+z)^2
c, (x-y-z)^2
2. Vt biểu thức dưới dạng tích
a, (a^2-2a+3)(a^2+a-3)
b,(a^2+2a+3)(a^2-2a+3)
c, (a^2+2a+3)(a^2+2a-3)
d, (a^2+2a+3)(a^2-2a-3)
e,(-a^2-2a+3)(-a^2-2a+3)
f,(a^2+2a)(2a-a^2)
Các bạn giúp mình vs mình cảm ơn
1:
a: \(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2zx+2yz\)
b: \(\left(x-y+z\right)^2=x^2+y^2+z^2-2xy+2xz-2yz\)
c: \(\left(x-y-z\right)^2=x^2+y^2+z^2-2xy-2xz+2yz\)
Viết các biểu thức sau dưới dạng tổng:
a..(-a\(^2\)-2a+3)(-a\(^2\)-2a+3)
b..(a\(^2\)+2a+3)(a\(^2\)-2a+3)
c.. (a\(^2\)+2a)(2a-a\(^2\))
a: \(=\left(-a^2-2a+3\right)^2\)
b: \(=\left(a^2+3\right)^2-4a^2\)
c: \(=-\left(a^2-2a\right)\left(a^2+2a\right)=-\left(a^4-4a^2\right)\)
1. Viết các biểu thức sau dưới dạng tổng:
a: (a - b2) × (a + b2)
b: (a2 + 2a + 3) × (a2 + 2a - 3)
c: (a2 + 2a +3) × (a2 - 2a - 3)
d: (a2 - 2a + 3) × (a2 + 2a -3)
e: (-a2 - 2a + 3) × (-a2 - 2a +3)
g: (a2 + 2a +3) × (a2 - 2a +3)
f: (a2 + 2a) × (2a - a2)
2. Viết các biểu thức sau dưới dạng tổng:
a: (x + 1) × (x2 - x +1)
b: (x + y + z)2
c: (x - y + z)2
d: (x - 2y) × (x2 + 2xy + 4y2)
e: (x - y - z)2
Bài 1:
a) \(\left(a-b^2\right)\left(a+b^2\right)=a^2-b^4\)
b) \(\left(a^2+2a-3\right)\left(a^2+2a+3\right)=\left(a^2+2a\right)^2-9\)
c) \(\left(a^2+2a+3\right)\left(a^2-2a-3\right)=a^2-\left(2a+3\right)^2\)
d) \(\left(a^2-2a+3\right)\left(a^2+2a+3\right)=9-\left(a^2-2a\right)^2\)
e) \(\left(-a^2-2a+3\right)\left(-a^2-2a+3\right)=\left(-a^2-2a+3\right)^2\)
g) \(\left(a^2+2a+3\right)\left(a^2-2a+3\right)=\left(a^2+3\right)^2-4a^2\)
f) \(\left(a^2+2a\right)\left(2a-a^2\right)=4a^2-a^4\)
Bài 2 :
a) \(\left(x+1\right)\left(x^2-x+1\right)=x^3+1\)
b) \(\left(x+y+z\right)^2=\left(x+y+z\right)\left(x+y+z\right)=x^2+xy+xz+yx+y^2+yz+zx+zy+z^2=x^2+2xy+2yz+2xz+y^2+z^2\)
c) \(\left(x-y+z\right)^2=\left(x-y+z\right)\left(x-y+z\right)=x^2-xy+xz-xy+y^2-yz+xz-yz+z^2=x^2+y^2+z^2-2xy+2xz-2yz\)d) \(\left(x-2y\right)\left(x^2+2xy+4y^2\right)=\left(x-2y\right)^3\)
e) \(\left(x-y-z\right)^2=\left(x-y-z\right)\left(x-y-z\right)=x^2-xy-xz-xy+y^2+yz-xz+yz+z^2=x^2-2xy-2xz+2yz+y^2+z^2\)