Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
đặng hải thủy
Xem chi tiết
missing you =
7 tháng 7 2021 lúc 20:12

a,\(A=\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)=\left(x^2+6x+5\right)\left(x^2+6x+8\right)\)

đặt \(x^2+6x+5=t=>t\left(t+3\right)=t^2+3t=t^2+2.\dfrac{3}{2}t+\dfrac{9}{4}-\dfrac{9}{4}\)

\(=\left(t+\dfrac{3}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}< =>t=\dfrac{-3}{2}\)

\(=>A\)\(=-\dfrac{3}{2}\left(-\dfrac{3}{2}+3\right)=-2,25\)

Vậy Min A\(=-2,25\)

b,\(B=-x^2-4x-9y^2-6y-6\)

\(=-\left(x^2+4x+4\right)-\left(3y\right)^2-2.3y-1-1\)

\(=-\left(x+2\right)^2-\left(3y+1\right)^2-1\le-1\)

dấu"=' xảy ra\(< =>x=-2,y=-\dfrac{1}{3}\)

Akai Haruma
7 tháng 7 2021 lúc 20:20

a.

$(x+1)(x+2)(x+4)(x+5)=(x+1)(x+5)(x+2)(x+4)=(x^2+6x+5)(x^2+6x+8)$

$=a(a+3)$ với $a=x^2+6x+5$

$=a^2+3a=(a^2+3a+\frac{9}{4})-\frac{9}{4}$

$=(a+\frac{3}{2})^2-\frac{9}{4}$

$=(x^2+6x+\frac{13}{2})^2-\frac{9}{4}\geq \frac{-9}{4}$

Vậy gtnn của biểu thức là $\frac{-9}{4}$. Giá trị này đạt tại $x^2+6x+\frac{13}{2}=0$

$\Leftrightarrow x=\frac{-6\pm \sqrt{10}}{2}$

ỉn2k8>.
Xem chi tiết
Nguyễn Ngọc Lộc
29 tháng 6 2021 lúc 8:26

Bài 2 :

\(A=4x^2-2.2x.2+4+1\)

\(=\left(2x-2\right)^2+1\)

Thấy : \(\left(2x-2\right)^2\ge0\)

\(A=\left(2x-2\right)^2+1\ge1\)

Vậy \(MinA=1\Leftrightarrow x=1\)

\(B=\left(5x\right)^2-2.5x.1+1-4\)

\(=\left(5x-1\right)^2-4\)

Thấy : \(\left(5x-1\right)^2\ge0\)

\(\Rightarrow B=\left(5x-1\right)^2-4\ge-4\)

Vậy \(MinB=-4\Leftrightarrow x=\dfrac{1}{5}\)

\(C=\left(7x\right)^2-2.7x.2+4-5\)

\(=\left(7x-2\right)^2-5\)

Thấy : \(\left(7x-2\right)^2\ge0\)

\(\Rightarrow C=\left(7x-2\right)^2-5\ge-5\)

Vậy \(MinC=-5\Leftrightarrow x=\dfrac{2}{7}\)

missing you =
29 tháng 6 2021 lúc 8:33

\(1.\)

\(A=-x^2-10x+1=-\left(x^2+10x-1\right)\)

\(=-\left(x^2+2.5x+5^2-5^2-1\right)=-\left[\left(x+5\right)^2-26\right]\)

\(=-\left(x+5\right)^2+26\le26\) dấu "=" xảy ra<=>x=-5

\(B=-4x^2-6x-5=-4\left(x^2+\dfrac{6}{4}x+\dfrac{5}{4}\right)\)

\(=-4\left(x^2+2.\dfrac{3}{4}x+\dfrac{9}{16}+\dfrac{11}{16}\right)\)\(=-4\left[\left(x+\dfrac{3}{2}\right)^2+\dfrac{11}{6}\right]\le-\dfrac{11}{4}\)

\(C=-16x^2+8x-1=-16\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)\)

\(=-16\left(x^2-2.\dfrac{1}{4}x+\dfrac{1}{16}\right)=-16\left(x-\dfrac{1}{4}\right)^2\le0\)

dấu"=" xảy ra<=>x=1/4

 

 

 

Lê Hương Giang
Xem chi tiết
Akai Haruma
7 tháng 7 2021 lúc 23:16

Lời giải:

$x=\frac{\sqrt{5}-1}{2}$

$2x=\sqrt{5}-1$

$2x+1=\sqrt{5}\Rightarrow (2x+1)^2=5$

$\Leftrightarrow 4x^2+4x-4=0$

$\Leftrightarrow x^2+x-1=0$

Khi đó:
\((4x^5+4x^4-5x^3+2x-2)^2\)

\(=[4x^3(x^2+x-1)-x^3+2x-2]^2\)

\(=(-x^3+2x-2)^2=[-x(x^2+x+1)+(x^2+x-1)-1]^2\)

\(=(-1)^2=1\)

Nguyễn Quốc Khánh
Xem chi tiết
nguyenquocthanh
22 tháng 10 2019 lúc 20:04

toi ko bt

Khách vãng lai đã xóa
Nguyễn Hiếu
Xem chi tiết
Nguyen Viet Phu
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 3 2020 lúc 19:19

a) \(\left(x-2\right)^2+2019\)

Ta có: \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-2\right)^2+2019\ge2019\forall x\)

Dấu '=' xảy ra khi

\(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy: Giá trị nhỏ nhất của biểu thức \(\left(x-2\right)^2+2019\) là 2019 khi x=2

b) \(\left(x-3\right)^2+\left(y-2\right)^2-2018\)

Ta có: \(\left(x-3\right)^2\ge0\forall x\)

\(\left(y-2\right)^2\ge0\forall y\)

Do đó: \(\left(x-3\right)^2+\left(y-2\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x-3\right)^2+\left(y-2\right)^2-2018\ge-2018\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)

Vậy: Giá trị nhỏ nhất của biểu thức \(\left(x-3\right)^2+\left(y-2\right)^2-2018\) là -2018 khi x=3 và y=2

c) \(-\left(3-x\right)^{100}-3\cdot\left(y+2\right)^{200}+2020\)

Ta có: \(\left(3-x\right)^{100}\ge0\forall x\)

\(\Rightarrow-\left(3-x\right)^{100}\le0\forall x\)

Ta có: \(\left(y+2\right)^{200}\ge0\forall y\)

\(\Rightarrow-3\cdot\left(y+2\right)^{200}\le0\forall y\)

Do đó: \(-\left(3-x\right)^{100}-3\left(y+2\right)^{200}\le0\forall x,y\)

\(\Rightarrow-\left(3-x\right)^{100}-3\left(y+2\right)^{200}+2020\le2020\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}\left(3-x\right)^{100}=0\\\left(y+2\right)^{200}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3-x=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-2\end{matrix}\right.\)

Vậy: Giá trị lớn nhất của biểu thức \(-\left(3-x\right)^{100}-3\cdot\left(y+2\right)^{200}+2020\) là 2020 khi x=3 và y=-2

d) \(-\left|x-1\right|-2\left(2y-1\right)^2+100\)

Ta có: \(\left|x-1\right|\ge0\forall x\)

\(\Rightarrow-\left|x-1\right|\le0\forall x\)

Ta có: \(\left(2y-1\right)^2\ge0\forall y\)

\(\Rightarrow-2\left(2y-1\right)^2\le0\forall y\)

Do đó: \(-\left|x-1\right|-2\left(2y-1\right)^2\le0\forall x,y\)

\(\Rightarrow-\left|x-1\right|-2\left(2y-1\right)^2+100\le100\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}\left|x-1\right|=0\\\left(2y-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\2y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\frac{1}{2}\end{matrix}\right.\)

Vậy: Giá trị lớn nhất của biểu thức \(-\left|x-1\right|-2\left(2y-1\right)^2+100\) là 100 khi x=1 và \(y=\frac{1}{2}\)

Khách vãng lai đã xóa
huong nguyen
Xem chi tiết
huyhuyhoang95
Xem chi tiết
huyhuyhoang95
9 tháng 2 2020 lúc 19:48

Các bạn giúp mình vs mình cần gấp . Nếu ai giúp mình sẽ k co

Khách vãng lai đã xóa
Nguyễn Thị Minh Thư
Xem chi tiết