Tính: \(\sqrt{14-8\sqrt{3}}\)
\(\sqrt{12-6\sqrt{3}}\)
\(\sqrt{19+8\sqrt{3}}\)
\(\sqrt{14-6\sqrt{5}}\)
tính giải chi tiết hộ mình nha
\(\sqrt{12-6\sqrt{3}}=\sqrt{9-6\sqrt{3}+3}=\sqrt{3^2-2.3.\sqrt{3}+\left(\sqrt{3}\right)^2}=\sqrt{\left(3-\sqrt{3}\right)^2}\)
\(=\left|3-\sqrt{3}\right|=3-\sqrt{3}\)
\(\sqrt{19+8\sqrt{3}}=\sqrt{16+8\sqrt{3}+3}=\sqrt{4^2+2.4.\sqrt{3}+\left(\sqrt{3}\right)^2}=\sqrt{\left(4+\sqrt{3}\right)^2}\)
\(=\left|4+\sqrt{3}\right|=4+\sqrt{3}\)
\(\sqrt{14-6\sqrt{5}}=\sqrt{9-6\sqrt{5}+5}=\sqrt{3^2-2.3.\sqrt{5}+\left(\sqrt{5}\right)^2}=\sqrt{\left(3-\sqrt{5}\right)^2}\)
\(=\left|3-\sqrt{5}\right|=3-\sqrt{5}\)
\(\sqrt{12-6\sqrt{3}}=\sqrt{3^2-2.3.\sqrt{3}+\left(\sqrt{3}\right)^2}=\sqrt{\left(3-\sqrt{3}\right)^2}=\left|3-\sqrt{3}\right|=3-\sqrt{3}\)
\(\sqrt{19+8\sqrt{3}}=\sqrt{4^2+2.4.\sqrt{3}+\left(\sqrt{3}\right)^2}=\sqrt{\left(4+\sqrt{3}\right)^2}=\left|4+\sqrt{3}\right|=4+\sqrt{3}\)
\(\sqrt{14-6\sqrt{5}}=\sqrt{3^2-2.3.\sqrt{5}+\left(\sqrt{5}\right)^2}=\sqrt{\left(3-\sqrt{5}\right)^2}=\left|3-\sqrt{5}\right|=3-\sqrt{5}\)
\(\sqrt{12-6\sqrt{3}}=3-\sqrt{3}\)
\(\sqrt{19+8\sqrt{3}}=4+\sqrt{3}\)
\(\sqrt{14-6\sqrt{5}}=3-\sqrt{5}\)
Cho\(x=\sqrt[3]{8+2\sqrt{14}}+\sqrt[3]{8-2\sqrt{14}}-1\).
Tính\(x^6+3x^5-3x^4-2x^3+9x^2-9x+2018\)
Đặt y = \(x+1=\sqrt[3]{8+2\sqrt{14}}+\sqrt[3]{8-2\sqrt{14}}\)
=> \(y^3=8+2\sqrt{14}+8-2\sqrt{14}+3\sqrt[3]{\left(8+2\sqrt{14}\right)\left(8-2\sqrt{14}\right)}.y\)
<=> \(y^3=16+6y\)
=> \(\left(x+1\right)^3=16+6\left(x+1\right)\)
=> \(x^3+3x^2+3x+1=6x+32\)
<=> \(x^3+3x^2-3x-5=26\)
Ta có:
\(x^6+3x^5-3x^4-2x^3+9x^2-9x+2018\)
= \(x^6+3x^5-3x^4-5x^3+3x^3+9x^2-9x-15+2033\)
= \(\left(x^3+3x^2-3x-5\right)\left(x^3+3\right)+2033\)
= \(26x^3+2111\)
\(=26\left(\sqrt[8]{8+2\sqrt{14}}+\sqrt[8]{8-2\sqrt{14}}-1\right)^3+2033\)
thực hiện phép tính \(\sqrt{14-8\sqrt{3}}-\sqrt{24-12\sqrt{3}}\)
Bài làm:
\(\sqrt{14-8\sqrt{3}}-\sqrt{24-12\sqrt{3}}\)
\(=\sqrt{8-8\sqrt{3}+6}-\sqrt{18-12\sqrt{3}+6}\)
\(=\sqrt{\left(2\sqrt{2}-\sqrt{6}\right)^2}-\sqrt{\left(3\sqrt{2}-\sqrt{6}\right)^2}\)
\(=2\sqrt{2}-\sqrt{6}-3\sqrt{2}+\sqrt{6}\)
\(=-\sqrt{2}\)
Học tốt
\(\sqrt{3.2-8\sqrt{3}+4.2}=\sqrt{\left(\sqrt{3}.\sqrt{2}\right)^2-2.2.\sqrt{2}.\sqrt{2}.\sqrt{3}+\left(2\sqrt{2}\right)^2}\)
\(=\sqrt{\left(2\sqrt{2}-\sqrt{6}\right)^2}-\sqrt{3^2.2-12\sqrt{3}+3.2}=2\sqrt{2}-\sqrt{6}-3\sqrt{2}+\sqrt{6}=-\sqrt{2}\)
Tính
\(A=\sqrt{\frac{\sqrt{5}}{8\sqrt{5}+3\sqrt{35}}}\left(3\sqrt{2}+\sqrt{14}\right)\)
Cho \(x=\sqrt[3]{8-2\sqrt{14}}+\sqrt[3]{8+2\sqrt{14}}-1\). Tính giá trị biểu thức
\(Q=\left(x^6+3x^5-3x^4-2x^3+9x^2-9x+2018\right)\)
\(A=\sqrt{\frac{\sqrt{5}}{8\sqrt{5}+3\sqrt{35}}}\left(3\sqrt{2}+\sqrt{14}\right)\)
Tính A
\(A=\sqrt{\frac{1}{8+3\sqrt{7}}}\left(3\sqrt{2}+\sqrt{14}\right)\)
\(A=\sqrt{\frac{2}{16+6\sqrt{7}}}\left(3\sqrt{2}+\sqrt{14}\right)\)
\(A=\frac{\sqrt{2}}{3+\sqrt{7}}\left(3+\sqrt{7}\right)\sqrt{2}\)
\(A=2\)
Tính:
1) \(\sqrt{4-2\sqrt{3}}\)
2) \(\sqrt{5+2\sqrt{6}}\)
3) \(\sqrt{7-2\sqrt{10}}\)
4) \(\sqrt{14-6\sqrt{6}}\)
5) \(\sqrt{8+2\sqrt{15}}\)
6) \(\sqrt{10-2\sqrt{21}}\)
7) \(\sqrt{11+2\sqrt{18}}\)
LÀM CHI TIẾT GIÚP MK NHÉ!
1) \(=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)
2) \(=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}=\sqrt{3}+\sqrt{2}\)
3) \(=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}=\sqrt{5}-\sqrt{2}\)
5) \(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}=\sqrt{5}+\sqrt{3}\)
6) \(=\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}=\sqrt{7}-\sqrt{3}\)
7) \(=\sqrt{\left(3+\sqrt{2}\right)^2}=3+\sqrt{2}\)
Tính:
\(A=\left(\sqrt{72}-3\sqrt{24}+5\sqrt{8}\right)\sqrt{2}+4\sqrt{27}\)
\(B=\dfrac{1}{\sqrt{2}-1}+\dfrac{14}{3+\sqrt{2}}\)
\(C=\dfrac{5+3\sqrt{5}}{\sqrt{5}}+\dfrac{3\sqrt{3}}{\sqrt{3}+1}-\left(\sqrt{5}+3\right)\)
\(D=\sqrt{\left(1-\sqrt{2}\right)^2}-3\sqrt{18}+4\sqrt{\dfrac{1}{2}}\)
Thực hiện phép tính:
a)\(\left(\frac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\frac{\sqrt{216}}{3}\right).\frac{1}{\sqrt{6}}\)
b) \(\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}\)
c) \(\frac{\sqrt{5-2\sqrt{6}}+\sqrt{8-2\sqrt{15}}}{\sqrt{7+2\sqrt{10}}}\)
d) \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right).\sqrt{7}+7\sqrt{8}\)
Thêm câu này hộ tớ nx nhé !
e) \(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right).\left(\sqrt{2}-3\sqrt{0.4}\right)\)
\(a,\left(\frac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\frac{\sqrt{216}}{3}\right)\cdot\frac{1}{\sqrt{6}}\)
\(=\left(\frac{\sqrt{12}-\sqrt{6}}{2\left(\sqrt{2}-1\right)}-\frac{6\sqrt{6}}{3}\right)\cdot\frac{1}{\sqrt{6}}\)
\(=\left(\frac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}-2\sqrt{6}\right)\cdot\frac{1}{\sqrt{6}}\)
\(=\left(\frac{\sqrt{6}}{2}-\frac{4\sqrt{6}}{2}\right)\cdot\frac{1}{\sqrt{6}}\)
\(=\frac{\sqrt{6}-4\sqrt{6}}{2}\cdot\frac{1}{\sqrt{6}}\)
\(=\frac{-3\sqrt{6}}{2}\cdot\frac{1}{\sqrt{6}}\)
\(=-\frac{3}{2}\)
\(b,\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}\)
\(=\left(\frac{\sqrt{7}\left(\sqrt{2}-1\right)}{1-\sqrt{2}}+\frac{\sqrt{5}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}\right).\left(\sqrt{7}-\sqrt{5}\right)\)
\(=\left(\frac{-\sqrt{7}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}-\frac{\sqrt{5}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\right).\left(\sqrt{7}-\sqrt{5}\right)\)
\(=\left(-\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)\)
\(=-\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)\)
\(=-\left(7-5\right)\)
\(=-2\)
tính giá trị biểu thức :
a) \(\sqrt{8+2\sqrt{7}-\sqrt{7}}\)
b) \(\sqrt{7+4\sqrt{3}-2\sqrt{3}}\)
c) \(\sqrt{14-2\sqrt{3}}+\sqrt{14+2\sqrt{3}}\)
d) \(\sqrt{22-2\sqrt{21}}-\sqrt{22+2\sqrt{21}}\)