Cho a b c > 0 cmr \(\sqrt{a}+\sqrt{b}+\sqrt{c}\ge\sqrt{a+b+c}\)
cho a,b,c>0 ; abc=2.CMR
\(a^3+b^3+c^3\ge a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\)
Do vai trò của 3 biến là như nhau, ko mất tính tổng quát, giả sử \(a\ge b\ge c\)
\(\Rightarrow\) Theo BĐT Chebyshev:
\(3\left(a^3+b^3+c^3\right)\ge\left(a^2+b^2+c^2\right)\left(a+b+c\right)\) (1)
Bunhiacopxki:
\(\left(a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\right)^2\le2\left(a^2+b^2+c^2\right)\left(a+b+c\right)\le6\left(a^3+b^3+c^3\right)\)
Nên ta chỉ cần chứng minh:
\(\left(a^3+b^3+c^3\right)^2\ge6\left(a^3+b^3+c^3\right)\)
\(\Leftrightarrow a^3+b^3+c^3\ge6\)
Hiển nhiên đúng do: \(a^3+b^3+c^3\ge3abc=6\)
Cho a,b,c>0 và abc=1
cmr: \(\frac{b+c}{\sqrt{a}}+\frac{a+c}{\sqrt{b}}+\frac{a+b}{\sqrt{c}}\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+3
\)
bđt cần c/m tương đương với:
\(\left(\frac{b+c}{\sqrt{a}}+\sqrt{a}\right)+\left(\frac{a+c}{\sqrt{b}}+\sqrt{b}\right)+\left(\frac{a+b}{\sqrt{c}}+\sqrt{c}\right)\ge2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+3\\ \ \)\(\left(a+b+c\right)\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)\ge2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+3\)
Mặt khác:
\(a+b+c\ge\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{3}\)
\(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\frac{9}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
=> \(VT\ge3\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
Ta cần c/m:
\(3\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\ge2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+3\)
<=> \(\sqrt{a}+\sqrt{b}+\sqrt{c}\ge3\sqrt[3]{\sqrt{abc}}=3\)(BĐt Cô-si)
xong rồi bạn nhé
b1 cho a,b>0 cmr
a) \(a+b\ge2\sqrt{a}.\sqrt{b}\)
b)\(a+b+c\ge\sqrt{a}.\sqrt{b}+\sqrt{a}.\sqrt{c}+\sqrt{b}.\sqrt{c}\)
a) \(a+b\ge2\sqrt{a}\cdot\sqrt{b}\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow a=b\)
b) \(a+b+c\ge\sqrt{a}\cdot\sqrt{b}+\sqrt{a}\cdot\sqrt{c}+\sqrt{b}\cdot\sqrt{c}\)
\(\Leftrightarrow2a+2b+2c-2\sqrt{a}\cdot\sqrt{b}-2\sqrt{a}\cdot\sqrt{c}-2\sqrt{b}\cdot\sqrt{c}\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\ge0\)( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
a)
\(a+b\ge2\sqrt{a}.\sqrt{b}\)
\(\Leftrightarrow\) \(a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow\) \(a-2\sqrt{ab}+b\ge0\)
\(\Leftrightarrow\) \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) ( vì a, b > 0) luôn đúng
=> Bất đẳng thức đã cho luôn đúng với ∀ a, b dương (đpcm)
cho a,b,c ≥0.CMR
a+b+c ≥\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
áp dụng cô si ta có : \(\left\{{}\begin{matrix}a+b\ge2\sqrt{ab}\\b+c\ge2\sqrt{bc}\\c+a\ge2\sqrt{ca}\end{matrix}\right.\)
cộng quế theo quế ta có : \(2a+2b+2c\ge2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}\)
\(\Leftrightarrow a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
Cách khác :3
\(a+b+c\text{≥}\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)
⇔ \(2\left(a+b+c\right)\text{≥}2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\)
⇔ \(a-2\sqrt{ab}+b+b-2\sqrt{bc}+c+c-2\sqrt{ac}+a\text{ ≥}0\)
⇔\(\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{a}-\sqrt{c}\right)^2\text{≥}0\left(luôn-đg\right)\)
\("="\text{⇔}a=b=c\)
Cho a, b, c \(\ge\)0; a + b + c = 1. CMR: \(\sqrt[]{a+b}+\sqrt{b+c}+\sqrt{c+1}\le\sqrt{6}\)
Áp dụng BĐT Bunhiakovski
\(VT^2=\left(\sqrt{a+b}.1+\sqrt{b+c}.1+\sqrt{c+a}.1\right)^2\)
\(\le\left(1^2+1^2+1^2\right)\left(a+b+b+c+c+a\right)\)
\(=3.2\left(a+b+c\right)=6\)
Do đó \(VT\le\sqrt{6}\)
Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{\sqrt{a+b}}{1}=\dfrac{\sqrt{b+c}}{1}=\dfrac{\sqrt{c+a}}{1}\\a+b+c=1\end{matrix}\right.\)
\(\Leftrightarrow a=b=c=\dfrac{1}{3}\)
Cho a,b,c >0 và abc= 1.CMR:
\(\frac{b+c}{\sqrt{a}}+\frac{c+a}{\sqrt{b}}+\frac{a+b}{\sqrt{c}}\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+3\)
Giúp với , cần gấp
Áp dụng BĐT Cô - si cho 2 số không âm, ta có:
\(VT=\text{Σ}_{cyc}\frac{b+c}{\sqrt{a}}\ge2\left(\text{Σ}_{cyc}\sqrt{\frac{bc}{a}}\right)\)
\(\Leftrightarrow\text{Σ}_{cyc}\frac{b+c}{\sqrt{a}}\ge\left(\sqrt{\frac{ca}{b}}+\sqrt{\frac{ab}{c}}\right)+\left(\sqrt{\frac{ab}{c}}+\sqrt{\frac{bc}{a}}\right)\)
\(+\left(\sqrt{\frac{bc}{a}}+\sqrt{\frac{ca}{b}}\right)\)
\(\Leftrightarrow\text{Σ}_{cyc}\frac{b+c}{\sqrt{a}}\ge2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\ge\sqrt{a}+\sqrt{b}+\sqrt{c}\)
\(+3\sqrt[6]{abc}=\sqrt{a}+\sqrt{b}+\sqrt{c}+3\)
(Dấu "="\(\Leftrightarrow a=b=c=1\))
\(\frac{b+c}{\sqrt{a}}+\frac{c+a}{\sqrt{b}}+\frac{a+b}{\sqrt{c}}\ge\frac{2\sqrt{bc}}{\sqrt{a}}+\frac{2\sqrt{ca}}{\sqrt{b}}+\frac{2\sqrt{ab}}{\sqrt{c}}=2\left(\sqrt{\frac{bc}{a}}+\sqrt{\frac{ca}{b}}+\sqrt{\frac{ab}{c}}\right)\)
\(=\left(\sqrt{\frac{bc}{a}}+\sqrt{\frac{ca}{b}}\right)+\left(\sqrt{\frac{ca}{b}}+\sqrt{\frac{ab}{c}}\right)+\left(\sqrt{\frac{ab}{c}}+\sqrt{\frac{bc}{a}}\right)\)
\(\ge2\sqrt{\sqrt{\frac{bc}{a}}\sqrt{\frac{ca}{b}}}+2\sqrt{\sqrt{\frac{ca}{b}}\sqrt{\frac{ab}{c}}}+2\sqrt{\sqrt{\frac{ab}{c}}\sqrt{\frac{bc}{a}}}\)
\(=2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)=\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
\(\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+3\sqrt[3]{\sqrt{a}\sqrt{b}\sqrt{c}}=\sqrt{a}+\sqrt{b}+\sqrt{c}+3\)
cho a,b,c>0. CMR: \(\frac{1}{a\sqrt{a+b}}+\frac{1}{b\sqrt{b+c}}+\frac{1}{c\sqrt{c+a}}\ge\frac{3}{\sqrt{2abc}}\)
Bài 1: Cho a,b,c là đọ dài 3 cạnh của một tam giác. CMR: \(\frac{1}{\sqrt{b+c-a}}+\frac{1}{\sqrt{a+c-b}}+\frac{1}{\sqrt{a+b-c}}\ge\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}.\)
Bài 2: Cho a,b,c >0. CMR: \(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(a+c-b\right).\)
Đặt ⎧⎪⎨⎪⎩a+b−c=xb+c−a=yc+a−b=z(x,y,z>0){a+b−c=xb+c−a=yc+a−b=z(x,y,z>0)
⇒⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩a=z+x2b=x+y2c=y+z2⇒{a=z+x2b=x+y2c=y+z2
⇒√a(1b+c−a−1√bc)=√2(z+x)2(1y−2√(x+y)(y+z))≥√x+√z2(1y−2√xy+√yz)=√x+√z2y−1√y⇒a(1b+c−a−1bc)=2(z+x)2(1y−2(x+y)(y+z))≥x+z2(1y−2xy+yz)=x+z2y−1y
Tương tự
⇒∑√a(1b+c−a−1√bc)≥∑√x+√z2y−∑1√y⇒∑a(1b+c−a−1bc)≥∑x+z2y−∑1y
⇒VT≥∑[x√x(y+z)]2xyz−∑√xy√xyz≥2√xyz(x+y+z)2xyz−x+y+z√xyz≐x+y+z√xyz−x+y+z√xyz=0⇒VT≥∑[xx(y+z)]2xyz−∑xyxyz≥2xyz(x+y+z)2xyz−x+y+zxyz≐x+y+zxyz−x+y+zxyz=0
(∑√xy≤x+y+z,x√x(y+z)≥2x√xyz)(∑xy≤x+y+z,xx(y+z)≥2xxyz)
dấu = ⇔x=y=z⇔a=b=c
Mai Anh ! cậu giỏi quá, cậu nè :33
Ha~ Idol về mảng copy nay giỏi quá lè:33. Tác hại của việc copy paste là đây
Lần sai copy paste nhớ nhìn lại với chỉnh sửa đi nhá. Ko để này lộ liễu bôi bác lắm
Copy always mà vẫn 50k giải tuần đấy, ghê=))
Cho a, b, c>0 và a+b+c\(\ge3\)
Cmr:
\(\dfrac{a^2}{a+\sqrt{bc}}+\dfrac{b^2}{b+\sqrt{ac}}+\dfrac{c^2}{c+\sqrt{ab}}\ge\dfrac{3}{2}\)
Áp dụng bđt cosi schwart ta có:
`VT>=(a+b+c)^2/(a+b+c+sqrt{ab}+sqrt{bc}+sqrt{ca})`
Dễ thấy `sqrt{ab}+sqrt{bc}+sqrt{ca}<a+b+c`
`=>VT>=(a+b+c)^2/(2(a+b+c))=(a+b+c)/2=3`
Dấu "=" `<=>a=b=c=1.`