Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Hữu Nam chuyên Đại...
Xem chi tiết
Lee Yeong Ji
Xem chi tiết
Almoez Ali
3 tháng 5 2022 lúc 11:29

undefined

Nguyễn Anh Thư
Xem chi tiết
nguyễn mai đăng khoa
Xem chi tiết
Thanh Hân
Xem chi tiết
Akai Haruma
11 tháng 1 2021 lúc 19:27

Lời giải:

a) Khi $m=1$ thì HPT trở thành:

\(\left\{\begin{matrix} x+y=1\\ x+y=1\end{matrix}\right.\Leftrightarrow x+y=1\Leftrightarrow y=1-x\)

Khi đó, hệ có nghiệm $(x,y)=(a,1-a)$ với $a$ là số thực bất kỳ.

Khi $m=-1$ thì hệ trở thành:

\(\left\{\begin{matrix} x-y=1\\ -x+y=1\end{matrix}\right.\Rightarrow (x-y)+(-x+y)=2\Leftrightarrow 0=2\) (vô lý)

Vậy HPT vô nghiệm

Khi $m=2$ thì hệ trở thành: \(\left\{\begin{matrix} x+2y=1\\ 2x+y=1\end{matrix}\right.\Rightarrow (x+2y)-(2x+y)=1-1=0\Leftrightarrow y-x=0\Leftrightarrow x=y\)

Thay $x=y$ vào 1 trong 2 PT của hệ thì có: $3x=3y=1\Rightarrow x=y=\frac{1}{3}$Vậy........

b) 

PT $(1)\Rightarrow x=1-my$. Thay vào PT $(2)$ có:

$m(1-my)+y=1\Leftrightarrow y(1-m^2)=1-m(*)$

b.1

Để HPT có nghiệm duy nhất thì $(*)$ có nghiệm $y$ duy nhất

Điều này xảy ra khi $1-m^2\neq 0\Leftrightarrow (1-m)(1+m)\neq 0$

$\Leftrightarrow m\neq \pm 1$

b.2 Để HPT vô nghiệm thì $(*)$ vô nghiệm $y$. Điều này xảy ra khi $1-m^2=0$ và $1-m\neq 0$

$\Leftrightarrow m=-1$

b.3 Để HPT vô số nghiệm thì $(*)$ vô số nghiệm $y$. Điều này xảy ra khi $1-m^2=0$ và $1-m=0$

$\Leftrightarrow m=1$

c) Ở b.1 ta có với $m\neq \pm 1$ thì $(*)$ có nghiệm duy nhất $y=\frac{1}{m+1}$

$x=1-my=\frac{1}{m+1}$

Thay vào $x+2y=3$ thì:

$\frac{3}{m+1}=3\Leftrightarrow m=0$

 

trần thị hoa
Xem chi tiết
William James Sidis
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 1 2021 lúc 21:37

\(\Leftrightarrow x^y+y^x+x^3+y^3+1+3\left(x+y\right)\left(x+1\right)\left(y+1\right)=x^3+y^3+1+z\)

\(\Leftrightarrow x^y+y^x+3\left(x+y\right)\left(y+1\right)\left(x+1\right)=z\)

Do \(VT>3\Rightarrow z>3\Rightarrow z\) lẻ đồng thời z không chia hết cho 3

Nếu \(x;y\) đều lẻ hoặc đều chẵn \(\Rightarrow VT\) chẵn (không thỏa mãn)

\(\Rightarrow\) x và y có đúng 1 số chẵn, do vai trò của x; y như nhau, giả sử y chẵn \(\Rightarrow y=2\)

\(\Rightarrow x^2+2^x+9\left(x+2\right)\left(x+1\right)=z\)

- Nếu \(x>3\Rightarrow x^2\) chia 3 dư 1, đồng thời do x lẻ \(\Rightarrow x=2k+1\)

\(\Rightarrow2^x=2^{2k+1}=2.4^k\) chia 3 dư 2

\(\Rightarrow x^2+2^x\) chia hết cho 3 \(\Rightarrow VT\) chia hết cho 3 (không thỏa mãn)

\(\Rightarrow x\le3\Rightarrow x=3\Rightarrow z=197\)  (thỏa mãn)

Vậy \(\left(x;y;z\right)=\left(3;2;197\right)\)

Trường Thịnh
Xem chi tiết
Trường Thịnh
24 tháng 2 2018 lúc 16:18

help me

Nguyễn Đỗ Thục Quyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 8 2021 lúc 13:42

a: Ta có: \(2x+3>1-x\)

\(\Leftrightarrow3x>-2\)

hay \(x>-\dfrac{2}{3}\)

b: Ta có: \(15-2\left(x-3\right)< -2x+5\)

\(\Leftrightarrow15-2x+6+2x-5< 0\)

\(\Leftrightarrow16< 0\left(vôlý\right)\)

c: Ta có: \(\left(x+1\right)\left(x-3\right)\le\left(x+4\right)\left(x-1\right)\)

\(\Leftrightarrow x^2-3x+x-3-x^2+x-4x+4\le0\)

\(\Leftrightarrow-5x\le-1\)

hay \(x\ge\dfrac{1}{5}\)