\(2\left(\cos^8x-\sin^8x\right)-\cos^32x\)
rút gọn giùm em ạ
Rút gọn
C =\(8\left(cos^8x-sin^8x\right)-cos6x-7cos2x\)
\(C=8\left(cos^8x-sin^8x\right)-cos6x-7cos2x\)
\(=8\left[\left(cos^2x\right)^4-\left(sin^2x\right)^4\right]-cos6x-7cos2x\)
\(=8\left[\left(cos^2x\right)^2+\left(sin^2x\right)^2\right]\left[\left(cos^2x\right)^2-\left(sin^2x\right)^2\right]-cos6x-7cos2x\)
\(=8\left[1\right]\left[cos^4x-sin^4x\right]-cos6x-7cos2x\)
\(=8\left[cos^4x-\left(1-cos^2x\right)^2\right]-cos6x-cos2x\)
\(=8\left[cos^4x-1+2cos^2x-cos^4x\right]-cos6x-7cos2x\)
\(=16cos^2x-8-cos6x-7cos2x\)
\(=16cos^2x-8-\left(1-2sin^23x\right)-\left(2cos^2x-1\right)\)
\(=18cos^2x-2sin^23x-1\)
\(=18cos^2x-2\left(1-cos^26x\right)-1\)
\(=20cos^2x-2cos^26x-3\)
\(F=\dfrac{\sin\alpha-2\sin\left(2\alpha\right)+\sin\left(3\alpha\right)}{\cos\alpha-3\cos\left(2\alpha\right)+\cos\left(3\alpha\right)}\)
Mn rút gọn giùm mình biểu thức này với. Mình cảm ơn ạ :<
Mẫu số là \(-3cos2a\) hay \(-2cos2a\) vậy bạn? -3 không hợp lý
1) Rút gọn biểu thức :
\(M=2\left(sin^4x+cos^4x+cos^2.sin^2x\right)^2-\left(sin^8x+cos^8x\right)\)
\(\left(sin^4x+cos^4x+cos^2x.sin^2x\right)^2-sin^8x\)
\(=\left(sin^4x+cos^2x\left(cos^2x+sin^2x\right)\right)^2-sin^8x\)
\(=\left(sin^4x+cos^2x\right)^2-sin^8x=\left(sin^4x+cos^2x-sin^4x\right)\left(sin^4x+cos^2x+sin^4x\right)\)
\(=cos^2x\left(2sin^4x+cos^2x\right)=2sin^4x.cos^2x+cos^4x\)
Tương tự: \(\left(sin^4x+cos^4x+sin^2xcos^2x\right)^2-cos^8x\)
\(=\left(cos^4x+sin^2x\left(sin^2x+cos^2x\right)\right)^2-cos^8x\)
\(=\left(cos^4x+sin^2x\right)^2-cos^8x\)
\(=\left(cos^4x+sin^2x-cos^4x\right)\left(cos^4x+sin^2x+cos^4x\right)\)
\(=sin^2x\left(2cos^4x+sin^2x\right)=2sin^2x.cos^4x+sin^4x\)
\(\Rightarrow M=2sin^2x.cos^4x+2sin^2x.cos^2x+sin^2x+cos^4x\)
\(M=2sin^2x.cos^2x\left(cos^2x+sin^2x\right)+sin^4x+cos^4x\)
\(M=2sin^2x.cos^2x+sin^4x+cos^4x\)
\(M=\left(sin^2x+cos^2x\right)^2=1\)
Chứng minh các biểu thức sau không phụ thuộc vào x:
a) \(A=2\left(cos^6x+sin^6x\right)-3\left(cos^4x+sin^4x\right)\)
b) \(B=2\left(sin^4x+cos^4x+sin^2x.cos^2x\right)^2-sin^8x-cos^8x\)
c) \(C=\dfrac{sin^2x}{1+cotgx}+\dfrac{cos^2x}{1+tgx}+sinx.cosx\)
d) \(D=\dfrac{cotg^2a-cos^2x}{cotg^2x}+\dfrac{sinx.cosx}{cotgx}\)
e) \(E=3\left(sin^8x-cos^8x\right)+4\left(cos^6x-2sin^6x\right)+6sin^4x\)
f) \(F=\dfrac{tg^2x}{sin^2x.cos^2x}-\left(1+tg^2x\right)^2\)
Chứng minh các biểu thức sau không phụ thuộc vào x:
a) \(A=\cos^4x-\sin^4x+2\sin^2x+\tan2x.\cot2x\)
b) \(B=\sqrt{\sin^4x+4\cos^2x}+\sqrt{\cos^4x+4\sin^2x}\)
c) \(C=3\left(\sin^8x-\cos^8x\right)+4\left(\cos^6x-2\sin^6x\right)+6\sin^4x\)
d) \(D=2\left(\sin^4x+\cos^4x+\sin^2x.\cos^2x\right)-\left(\sin^8x+\cos^8x\right)\)
chứng minh biểu thức ko phụ thuộc vào x
A= \(\sqrt{\sin^4x+4\cos^2x}+\sqrt{\cos^4x+4\sin^2x}\)
B= \(3\left(\sin^8x-\cos^8x\right)+4\left(\cos^6x-2\sin^6x\right)+6\sin^4x\)
\(A=\sqrt{\left(1-cos^2x\right)^2+4cos^2x}+\sqrt{\left(1-sin^2x\right)^2+4sin^2x}\)
\(=\sqrt{cos^4x+2cos^2x+1}+\sqrt{sin^4x+2sin^2x+1}\)
\(=\sqrt{\left(cos^2x+1\right)^2}+\sqrt{\left(sin^2x+1\right)^2}\)
\(=sin^2x+cos^2x+2=3\)
b/
\(3\left(sin^8x-cos^8x\right)=3\left(sin^4x+cos^4x\right)\left(sin^4x-cos^4x\right)\)
\(=3\left(sin^4x+cos^4x\right)\left(sin^2x-cos^2x\right)\)
\(=3sin^6x-3sin^4x.cos^2x+3sin^2x.cos^4x-3cos^6x\)
\(\Rightarrow B=-5sin^6x-3sin^4x.cos^2x+3sin^2x.cos^4x+cos^6x+6sin^4x\)
\(=-5sin^6x-3sin^4x\left(1-sin^2x\right)+3cos^4x\left(1-cos^2x\right)+cos^6x+6sin^4x\)
\(=-2sin^6x-2cos^6x+3sin^4x+3cos^4x\)
\(=-2\left(1-3sin^2x.cos^2x\right)+3\left(1-2sin^2x.cos^2x\right)\)
\(=-2+3=1\)
Chứng minh biểu thức sau không phụ thuộc x:
\(C=2\left(cos^4x+sin^4x+sin^2x.cos^2x\right)^2-\left(sin^8x+cos^8x\right)\)
chung minh cac bieu thuc sau khong phu thuoc vao x:
a/ \(3\left(\sin^8x-\cos^8x\right)+4\left(\cos^6x-2\sin^6x\right)+6\sin^4x\)
b/\(\frac{\tan^2x-\cos^2x}{\sin^2x}+\frac{\cot^2x-\sin^2x}{\cos^2x}\)
chứng minh biểu thức không phụ thuộc vào x:
\(3\left(sin^8x-cos^8x\right)+4\left(cos^6x-2sin^6x\right)+6sin^4x\)
\(=3\left(sin^4x+cos^4x\right)\left(sin^2x-cos^2x\right)+4cos^6x-8sin^6x+6sin^4x\)
\(=3\left(sin^4x+cos^4x\right)\left(sin^2x-cos^2x\right)+4cos^6x-2sin^6x+6sin^4x\left(1-sin^2x\right)\)
\(=sin^6x+3sin^4x.cos^2x+3cos^2x.sin^4x+cos^6x\)
\(=\left(sin^2x+cos^2x\right)^3=1\)