Chương 6: CUNG VÀ GÓC LƯỢNG GIÁC. CÔNG THỨC LƯỢNG GIÁC

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trùm Trường

1) Rút gọn biểu thức :

\(M=2\left(sin^4x+cos^4x+cos^2.sin^2x\right)^2-\left(sin^8x+cos^8x\right)\)

Nguyễn Việt Lâm
10 tháng 4 2019 lúc 23:32

\(\left(sin^4x+cos^4x+cos^2x.sin^2x\right)^2-sin^8x\)

\(=\left(sin^4x+cos^2x\left(cos^2x+sin^2x\right)\right)^2-sin^8x\)

\(=\left(sin^4x+cos^2x\right)^2-sin^8x=\left(sin^4x+cos^2x-sin^4x\right)\left(sin^4x+cos^2x+sin^4x\right)\)

\(=cos^2x\left(2sin^4x+cos^2x\right)=2sin^4x.cos^2x+cos^4x\)

Tương tự: \(\left(sin^4x+cos^4x+sin^2xcos^2x\right)^2-cos^8x\)

\(=\left(cos^4x+sin^2x\left(sin^2x+cos^2x\right)\right)^2-cos^8x\)

\(=\left(cos^4x+sin^2x\right)^2-cos^8x\)

\(=\left(cos^4x+sin^2x-cos^4x\right)\left(cos^4x+sin^2x+cos^4x\right)\)

\(=sin^2x\left(2cos^4x+sin^2x\right)=2sin^2x.cos^4x+sin^4x\)

\(\Rightarrow M=2sin^2x.cos^4x+2sin^2x.cos^2x+sin^2x+cos^4x\)

\(M=2sin^2x.cos^2x\left(cos^2x+sin^2x\right)+sin^4x+cos^4x\)

\(M=2sin^2x.cos^2x+sin^4x+cos^4x\)

\(M=\left(sin^2x+cos^2x\right)^2=1\)


Các câu hỏi tương tự
Lâm Ánh Yên
Xem chi tiết
Le van a
Xem chi tiết
Nguyễn Thị Yến Nga
Xem chi tiết
Tùng
Xem chi tiết
Hương Ly Đào Thị
Xem chi tiết
Le le
Xem chi tiết
Nguyễn Hà Chi
Xem chi tiết
Trùm Trường
Xem chi tiết
Nguyễn Ngọc Bảo Quang
Xem chi tiết