Tìm (p): y=ax^2+bx+1 biết (p) đi qua A(1,6) Có trục đối xứngx=-2
(P) y=ax^2+bx+c. (P) đi qua M(-1;2) trục đối xứng x=-1.
tìm a,b,c
cho (P) : y = ax2 + bx + 2 . Tìm a và b biết (P) có trục đối xứng x = \(\frac{5}{6}\) và (P) đi qua M ( 2;4 )
Trục đối xứng của parabol là đường thẳng x = -b/(2a) => -b/(2a) = 5/6
=> b = -5/3 a (1)
đồ thị đia qua M(2,4) => 4 = a.22 + b,2 + 2
=> 4a + 2b = 2 (2)
Thay (1) vào (2):
4a - 10/3 a = 2
=> a = ...
=> b = -5/3 a
1. Cho (Pm) y=mx^2+(2m-1)x+m+4
a) Khảo sát & vẽ (Pn) ứng vs m=1.
b) Cm: (Pm) luôn đi qua 1 điểm cố định Vm.
2. Tìm (P) y=ax^2+bx+c, biết:
a) (P) đi qua 2 điểm A(1;0) & B( 0;5) và có trục đối xứng x=3.
b) (P) đi qua A(2;3) và đạt cực đại =4 khi x=3.
3.
a) Tìm (P) y=ax^2+bx+c, biết (P) đi qua A( 5;12) và đạt cực tiểu S( 1;-3).
b) Khảo sát & vẽ (P) tìm đc ở câu a.
Bài 2:
a: Theo đề, ta có:
\(\left\{{}\begin{matrix}a+b+c=0\\c=5\\\dfrac{-b}{2a}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=-5\\b=-6a\\c=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-5a=-5\\b=-6a\\c=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-6\\c=5\end{matrix}\right.\)
b: Theo đề, ta có:
\(\left\{{}\begin{matrix}4a+2b+c=3\\\dfrac{-b}{2a}=3\\-\dfrac{b^2+4ac}{4a}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a+2b+c=3\\b=-6a\\\left(-6a\right)^2+4ac=-16a\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4a-12a+c=3\\b=-6a\\36a^2+16a+4ac=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=8a+3\\b=-6a\\36a^2+16a+4a\left(8a+3\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{7}{17}\\b=6\cdot\dfrac{7}{17}=\dfrac{42}{17}\\c=8\cdot\dfrac{-7}{17}+3=-\dfrac{5}{17}\end{matrix}\right.\)
Tìm Parabol y =\(ax^2+bx+c\) biết
a) (P) đi qua A (1,0) và nhận I \(\left(\dfrac{-3}{2};\dfrac{-25}{4}\right)\) làm đỉnh.
b) (P) đi qua A (0,-1), B (2,-1) và nhận đường thẳng x = 1 làm trục đối xứng.
GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP
a: Vì (P) đi qua A(1;0) nên c=0
Vậy: \(y=ax^2+bx\)
Theo đề, ta có:
\(\left\{{}\begin{matrix}\dfrac{-b}{2a}=\dfrac{-3}{2}\\-\dfrac{b^2-4ac}{4a}=-\dfrac{25}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{b}{2a}=\dfrac{3}{2}\\\dfrac{b^2}{4a}=\dfrac{25}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=3a\\9a^2-25a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{25}{9}\\b=\dfrac{25}{3}\end{matrix}\right.\)
\(a,A\left(1;0\right)\in\left(P\right)\Leftrightarrow a+b+c=0\\ I\left(-\dfrac{3}{2};-\dfrac{25}{4}\right)\text{ là đỉnh}\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{9}{4}a-\dfrac{3}{2}b+c=-\dfrac{25}{4}\\\dfrac{b}{2a}=\dfrac{3}{2}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a+b+c=0\\b=3a\\\dfrac{9}{4}a-\dfrac{3}{2}b+c=-\dfrac{25}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a+c=0\\b=3a\\-\dfrac{9}{4}a+c=-\dfrac{25}{4}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=1\\b=3\\c=-4\end{matrix}\right.\)
Vậy \(\left(P\right):y=x^2+3x-4\)
Tìm Parabol y =\(ax^2+bx+c\) biết
a) (P) đi qua A (1,0) và nhận I \(\left(\dfrac{-3}{2};\dfrac{-25}{4}\right)\) làm đỉnh.
b) (P) đi qua A (0,-1), B (2,-1) và nhận đường thẳng x = 1 làm trục đối xứng.
GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP
b: Vì (P) đi qua A(0;-1) và B(2;-1) nên
\(\left\{{}\begin{matrix}c=-1\\4a+b-1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=-1\\4a+b=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}c=-1\\4a+b=0\\2a+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=0\\a=0\end{matrix}\right.\)
Biết rằng parabol (P): y= ax2+bx-7 đi qua điểm A(-1;-6) và có trục đối xứng X=\(-\frac{1}{3}\). Tính giá trị của biểu thức a2-b2
\(y=ax^2+bx-7\)đi qua điểm \(A\left(-1,-6\right)\)nên \(a-b-7=-6\Leftrightarrow a-b=1\)(1)
\(y=ax^2+bx-7\)có trục đối xứng \(x=-\frac{1}{3}\)nên \(\frac{-b}{2a}=-\frac{1}{3}\Leftrightarrow2a-3b=0\)(2)
Từ (1) và (2) suy ra \(\hept{\begin{cases}a=3\\b=2\end{cases}}\)
\(a^2-b^2=3^2-2^2=5\).
Vào thăm trang cá nhân của tớ nhá
vì sao cách làm của cô em giúp được chị tỉnh ngộ ? tập đọc : chị em tôi
lập phương trình của (P) : ax2 + bx + c (a khác 0 ) , biết : a) (P) có đỉnh I (1 , 2) và qua M ( -1 , -2 ) ; b) (P) có trục đối xứng x = 2 và đi qua A (1 , -6) , B(4 , 3)
(P): ax2+bx+c có đỉnh $I(-\frac{b}{2a};-\frac{\Delta}{4a})$, trục đối xứng $x=-\frac{b}{2a}$
a) b=-2a, $\Delta=b^2-4ac=-8a$ nên a-c=-2. Lại có (P) qua M nên a-b+c=-2. Vậy a=-1,b=2,c=1 nên (P):--x2+2x+1
b) b=-4a. Lại có (P) qua A,B nên a+b+c=-6, 16a+4b+c=3. Suy ra a=3, b=-12, c=3. Vậy (P):3x2-12x+3
Xác định Parabol : y = \(ax^2\) + bx + 2 biết
a) (P) đi qua A (3,-4) và có trục đối xứng là x = \(\dfrac{-3}{2}\) ;
b) (P) có đỉnh I (2,-1).
GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP
\(a,\Leftrightarrow\left\{{}\begin{matrix}9a+3b=-6\\\dfrac{b}{2a}=\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a+b=-2\\3a=b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{3}\\b=-1\end{matrix}\right.\\ \Leftrightarrow\left(P\right):y=-\dfrac{1}{3}x^2-x+2\\ b,\Leftrightarrow\left\{{}\begin{matrix}4a+2b=-3\\-\dfrac{b}{2a}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a+2b=-3\\4a-b=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{4}\\b=-1\end{matrix}\right.\Leftrightarrow\left(P\right):y=-\dfrac{1}{4}x^2-x+2\)
Cho parabol P y=a2 +bx+2 biết P đi qua A(-2;4) và có trục đối xứng x=1
Do P đi qua điểm A(-2;0); B(2;-4) và nhận đường thẳng x=1 là trục đối xứng
Ta có hệ phương trình:
⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩a(−2)2+b(−2)+c=0a(2)2+2b+c=−4−b2a=1{a(−2)2+b(−2)+c=0a(2)2+2b+c=−4−b2a=1
⇔⎧⎪⎨⎪⎩4a+−2b+c=0(1)4a+2b+c=−42a+b=0(3)⇒2(2a+b)+c=−4(2)⇔{4a+−2b+c=0(1)4a+2b+c=−42a+b=0(3)⇒2(2a+b)+c=−4(2)
Thế (3) vào (2)
⇒0+c=−4⇒c=−4⇒0+c=−4⇒c=−4
⇒⎧⎪⎨⎪⎩a=12b=−1c=−4