1. Cho (Pm) y=mx^2+(2m-1)x+m+4
a) Khảo sát & vẽ (Pn) ứng vs m=1.
b) Cm: (Pm) luôn đi qua 1 điểm cố định Vm.
2. Tìm (P) y=ax^2+bx+c, biết:
a) (P) đi qua 2 điểm A(1;0) & B( 0;5) và có trục đối xứng x=3.
b) (P) đi qua A(2;3) và đạt cực đại =4 khi x=3.
3.
a) Tìm (P) y=ax^2+bx+c, biết (P) đi qua A( 5;12) và đạt cực tiểu S( 1;-3).
b) Khảo sát & vẽ (P) tìm đc ở câu a.
Bài 2:
a: Theo đề, ta có:
\(\left\{{}\begin{matrix}a+b+c=0\\c=5\\\dfrac{-b}{2a}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=-5\\b=-6a\\c=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-5a=-5\\b=-6a\\c=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-6\\c=5\end{matrix}\right.\)
b: Theo đề, ta có:
\(\left\{{}\begin{matrix}4a+2b+c=3\\\dfrac{-b}{2a}=3\\-\dfrac{b^2+4ac}{4a}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a+2b+c=3\\b=-6a\\\left(-6a\right)^2+4ac=-16a\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4a-12a+c=3\\b=-6a\\36a^2+16a+4ac=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=8a+3\\b=-6a\\36a^2+16a+4a\left(8a+3\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{7}{17}\\b=6\cdot\dfrac{7}{17}=\dfrac{42}{17}\\c=8\cdot\dfrac{-7}{17}+3=-\dfrac{5}{17}\end{matrix}\right.\)