Cho ΔABC nhọn
CMR: \(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\)
Cho tam giác ABC có 3 góc nhọn . CMR:
\(1< \frac{\sin A}{\sin B+\sin C}+\frac{\sin B}{\sin C+\sin A}+\frac{\sin C}{\sin A+\sin B}< 2\)
đặt AB=c, BC=a, AC=c.
để chứng minh bđt trên ta sẽ áp dụng công thức: \(S_{\Delta ABC}=\frac{1}{2}.a.b.sinC=\frac{1}{2}.b.c.sinA=\frac{1}{2}.a.c.sinB\)
ta có: \(\frac{sinA}{sinB+sinC}+\frac{sinB}{sinA+sinC}+\frac{sinC}{sinA+sinB}\)
\(=\frac{a.b.c.sinA}{a.b.c.sinB+a.b.c.sinC}+\frac{a.b.c.sinB}{a.b.c.sinA+a.b.c.sinC}+\frac{a.b.c.sinC}{a.b.c.sinA+a.b.c.sinB}\)
;\(=\frac{2S_{\Delta ABC}.a}{2S_{\Delta ABC}.b+2S_{\Delta ABC}.c}+\frac{2S_{\Delta ABC}.b}{2.S_{\Delta ABC}.c+2.S_{\Delta ABC}.b}+\frac{2S_{\Delta ABC}.c}{2S_{\Delta ABC}.b+2S_{\Delta ABC}.a}\)
\(=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\).
Ta có: \(\frac{a}{b+c}>\frac{a}{a+b+c};\frac{b}{a+c}>\frac{b}{a+b+c};\frac{c}{a+b}>\frac{c}{a+b+c}\)
nên \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1.\)
Ta sẽ chứng minh bđt phụ: \(\frac{a}{b+c}< \frac{2a}{a+b+c}\left(1\right)\)
Thật vậy: \(\left(1\right)\Leftrightarrow a^2< a\left(b+c\right)\Leftrightarrow a< b+c\)(đúng vì a,b,c là độ dài 3 cạnh của tam giác).
tương tự: \(\frac{b}{a+c}< \frac{2b}{a+b+c};\frac{c}{a+b}< \frac{2c}{a+b+c}\).
suy ra: \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}< \frac{2a}{b+c}+\frac{2b}{a+c}+\frac{2c}{a+b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\).
vậy bất đẳng thức đã được chứng minh.
ô mai nhót . Bài toàn khó thế này mà giải được . Tài thật
Cho tam giác ABC nhọn. CMR: \(sin\frac{A}{2}+sin\frac{B}{2}+sin\frac{C}{2}\le\frac{3}{2}\) ?
cho tam giác ABC nhọn. Cmr:
a) \(sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}\le\frac{1}{8}\)
b)\(cosA+cosB+cosC\le\frac{3}{2}\)
cho tam giác ABC nhọn. Cmr:
a)\(sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}\le\frac{1}{8}\)
b)\(cosA+cosB+cosC\le\frac{3}{2}\)
Bài 1 : cho tam giác ABC có góc A và B nhọn , các đg trung tuyến BM và CN vuông góc với nhau tại G . CMR :\(cotB+cotC\ge\frac{2}{3}\)
Bài 2 Cho tam giác ABC có 3 góc nhọn có BC=a,CA=b,AB=c. cmr
a.\(a^2=b^2+c^2-2bc.cosA\)
b.\(sin\frac{A}{2}\le\frac{a}{b+c}\)
c.\(sin\frac{A}{2}.sin\frac{B}{2}.sin\frac{C}{2}\le\frac{1}{8}\)
Bài 1 : cho tam giác ABC có góc A và B nhọn , các đg trung tuyến BM và CN vuông góc vs nhau tại G . CMR :\(cotB+cotC\ge\frac{2}{3}\)
Bài 2 : Cho tam giác ABC có 3 góc nhọn có BC=a, CA=b, AB=c. CMR :
a.\(a^2=b^2+c^2-2bc.cosA\)
b.\(sin\frac{A}{2}\le\frac{a}{b+c}\)
c.\(sin\frac{A}{2}.sin\frac{B}{2}.sin\frac{C}{2}\le\frac{1}{8}\)
Từ A vẽ AD _|_ BC ,AG là trung tuyến cắt BC tại E\(\Rightarrow\)\(\hept{\begin{cases}AD\le AE\Rightarrow\frac{1}{AD}\ge\frac{1}{AE}\\1.2GE=BC\left(do\Delta BGCvuongcoElatrungdiem\right)\end{cases}}\)
cotB=\(\frac{BD}{AD}\)cotC=\(\frac{CD}{AD}\)\(\Rightarrow\)2.cotB + cotC=\(\frac{BC}{AD}\)
3.G là trực tâm nên 3GE=AE\(\Rightarrow\)\(\frac{1}{AD}\ge\frac{1}{3GE}\)
từ 1, 2 và 3 \(\Rightarrow\)cotB + cotC=\(\frac{BC}{AD}\ge\frac{2GE}{3GE}=\frac{2}{3}\)
\(\cot B+\cot C=\frac{BD}{AD}+\frac{CD}{AD}=\frac{BC}{AD}=\frac{BC}{3GH}\ge\frac{2GH}{3GH}=\frac{2}{3}\)
VỚI D LÀ CHÂN ĐƯỜNG CAO HẠ TỪ A XUÔNG BC , G LÀ TRỌNG TÂM , H LÀ CHÂN ĐƯỜNG CAO HẠ TỪ G XUỐNG BC
B2 THÌ GIẢI BÌNH THƯỜNG =='. ĐỌC THÊM NCPT 9 NHÉ
Cho tam giác ABC nhọn và BC = a , CA = b , AB = c
CM:\(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\)
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
Tự vẽ hình babe :))
Kẻ \(BD\perp AC\); \(CE\perp AB\)
Xét \(\Delta ADB\)có \(\sin A=\frac{BD}{AB}\) \(\Rightarrow\frac{a}{\sin A}=BC\div\frac{BD}{AB}=\frac{BC\times AB}{BD}\left(1\right)\)
Xét \(\Delta AEC\)có \(\sin A=\frac{EC}{AC}\) \(\Rightarrow\frac{a}{\sin A}=BC\div\frac{EC}{AC}=\frac{CA\times BC}{EC}\left(2\right)\)
Xét \(\Delta BEC\)có \(\sin B=\frac{EC}{BC}\) \(\Rightarrow\frac{b}{\sin B}=CA\div\frac{EC}{BC}=\frac{CA\times BC}{EC}\left(3\right)\)
Xét \(\Delta BDC\)có \(\sin C=\frac{DB}{BC}\)\(\Rightarrow\frac{c}{\sin C}=AB\div\frac{BD}{BC}=\frac{AB\times BC}{BD}\left(4\right)\)
Từ (1); (2); (3) và (4) \(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\left(đpcm\right)\)
(Định lý sin) Cho tam giác nhọn ABC có BC = a, AC = b, AB = c và nội tiếp đường tròn (O ; R). Chứng minh rằng:
$\dfrac{a}{\sin{A}}=\dfrac{b}{\sin{B}}=\dfrac{c}{\sin{C}}=2R$.
\(S_{ABC}=\frac{bc\sin A}{2}=\frac{ac\sin B}{2}=\frac{ab\sin C}{2}=\frac{abc}{4R}\)
+ Từ \(\frac{bc\sin A}{2}=\frac{ac\sin B}{2}\Rightarrow b\sin A=a\sin B\Rightarrow\frac{a}{\sin A}=\frac{b}{\sin B}\left(1\right)\)
+ Từ \(\frac{ac\sin B}{2}=\frac{ab\sin C}{2}\Rightarrow c\sin B=b\sin C\Rightarrow\frac{b}{\sin B}=\frac{c}{\sin C}\left(2\right)\)
+ Từ \(\frac{bc\sin A}{2}=\frac{abc}{4R}\Rightarrow\sin A=\frac{a}{2R}\Rightarrow\frac{a}{\sin A}=2R\left(3\right)\)
Từ (1) (2) (3) \(\Rightarrow\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R\left(dpcm\right)\)
Từ A kẻ đường cao AH (H thuộc BC) , Từ B kẻ đường cao BK (K thuộc AC)
Ta có : ; ;
;
(1)
Lại có :
(2)
Từ (1) và (2) ta có : (Đpcm)
Kẻ đường kính BD.
ta có góc A = góc D ( góc nội tiếp chắn cung BC)
=> sinA = sin D
có tam giác BCD vuông tại C => sinD = BD/BC
=> sinA = 2R/a
=> a/sinA=2R
CMTT ta có b/sinB =2R
c/sinC=2R
do đó a/sinA=b/sinB=c/sinC=2R
Cho tam giác ABC nhọn với AB = c , AC = b , BC = a . Chứng minh :
\(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\)
Kẽ đường cao AH
\(\Rightarrow\hept{\begin{cases}sinB=\frac{AH}{c}\\sinC=\frac{AH}{b}\end{cases}}\)
\(\Rightarrow AH=c.sinB=b.sinC\)
\(\Rightarrow\frac{b}{sinB}=\frac{c}{sinC}\)
Tương tự ta cũng có
\(\frac{b}{sinB}=\frac{a}{sinA}\)
\(\Rightarrow\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)