bài 1 : không dùng bảng số hoặc máy tính, hãy tính :
a, A = \(\cos^220^o+\cos^230^o+\cos^240^o+.....+\cos^270^o\)
b, B = \(\sin^25^o+\sin^225^o+\sin^245^o+\sin^265^o+\sin^285^o\)
c, C = \(\sin^210^o-\sin^220^o+\sin^230^o-\sin^240^o-\sin^250^o-\sin^270^o+\sin^280^o\)
bài 2 : cho tam giác ABC vuông tại A, biết sin B = \(\frac{1}{4}\) C. Tính C ?
Cho \(\tan=3\)
Chứng minh \(\frac{\sin^3\alpha-\cos^3\alpha}{\sin^2\alpha+\cos^2\alpha}=\frac{13}{14}\)
cho \(tan\alpha=4\) tính \(\frac{sin^3\alpha+cos^3\alpha}{sin^3\alpha-cos^3\alpha}\)
Bài 1: Cho tam giác ABC vuông tại A, có AB=30 cm và C=30 độ. Giải tam giác vuông ABC
Bài 2: Cho tam giác ABC vuông tại A, đường cao AH. Biết HB=3,6 cm HC=6,4 cm
a,Tính độ dài các đoạn thẳng AB, AC, AH
b, Kẻ HE vuông góc với AB, HF vuông góc với AC. Chứng minh AB.AE=AC.AF
Bài 3: Cho α là góc nhọn. Rút gọn biểu thức A=\(\sin^6\alpha+\cos^6\alpha+3\sin^2\alpha-\cos^2\alpha\)
Bài 4: Cho tam giác ABC vuông tại A, đường cao AH. Cho biết BH=a, HC=b . Chứng minh \(\sqrt{ab}\)≤\(\frac{a+b}{2}\)
Bài 1: không dùng bảng số, máy tính bỏ túi hãy tính giá trị của các biểu thức
a, M=sin242 + sin243 + sin244 + sin245 + sin246 + sin247 + sin248
b, cos215 - cos225 + cos235 - cos245 + cos255 - cos265 + cos275
Bài 2: chứng minh rằng
a, (1- cosa)/sina=sina/(1+cosa)
b, tan2a - sin2a = tan2a.sin2a
Bài 3 cho
sinx + cosx = căn2
Chứng minh rằng sinx = cosx. Tìm x
RÚT GỌN:
a, \(A=\dfrac{\left(\cos\alpha-\sin\alpha\right)^2-\left(\cos\alpha-\sin^2\alpha\right)}{\cos\alpha.\sin\alpha}\)
\(b,B=\sin^6\alpha+\cos^6\alpha+3\sin^6\alpha.\cos^2\alpha\)
chứng minh các tslg sau
a) tan α = \(\dfrac{sin a}{cos a}\)
b)cot a = \(\dfrac{cos a}{sin a}\)
c)tan a . cot a = 1
\(\sin^235^o+tan17^o+sin^255^o-cot73^o-\frac{cot47^o}{tan53^o}\)
không dùng máy túnh hãy tính
Tính giá trị biểu thức sau
a) sin2 1° +sin2 3° + sin2 5° +.....+ sin2 89°
b) tg5°.tg10°.tg15°.....tg85°