a)theo tỉ số lượng giác ta có: tan a= AC/AB (1)
sin a= AC/BC
cos a= AB/BC
-> sin a * cos a= AC/BC : BC/AB= AC/AB (2)
Từ (1) (2) ta có tan a = sina / cos a
a)theo tỉ số lượng giác ta có: tan a= AC/AB (1)
sin a= AC/BC
cos a= AB/BC
-> sin a * cos a= AC/BC : BC/AB= AC/AB (2)
Từ (1) (2) ta có tan a = sina / cos a
a)Chứng minh 1+tan2α = \(\dfrac{1}{cos^2a}\)
b)Áp dụng câu a tính sin a,cos a biết tan a =\(\dfrac{3}{5}\)
Bài 1: không dùng bảng số, máy tính bỏ túi hãy tính giá trị của các biểu thức
a, M=sin242 + sin243 + sin244 + sin245 + sin246 + sin247 + sin248
b, cos215 - cos225 + cos235 - cos245 + cos255 - cos265 + cos275
Bài 2: chứng minh rằng
a, (1- cosa)/sina=sina/(1+cosa)
b, tan2a - sin2a = tan2a.sin2a
Bài 3 cho
sinx + cosx = căn2
Chứng minh rằng sinx = cosx. Tìm x
RÚT GỌN:
a, \(A=\dfrac{\left(\cos\alpha-\sin\alpha\right)^2-\left(\cos\alpha-\sin^2\alpha\right)}{\cos\alpha.\sin\alpha}\)
\(b,B=\sin^6\alpha+\cos^6\alpha+3\sin^6\alpha.\cos^2\alpha\)
C1: với góc nhọn a và b tùy ý và a < b ta có :
A. cos a - cos b > 0
B. cos a - cos b = 0
C. cos a - cos b < 0
D. cos b - cos a > 0
C2: tìm khẳng định đúng trong các khẳng định sau :
A. tan 62 độ > tan 73 độ > tan 75 độ
B. tan 75 độ > tan 62 độ > tan 73 độ
C. tan 75 độ < tan 73 độ < tan 62 độ
D. tan 75 độ > tan 73 độ > tan 62 độ
C3: cho các góc : 14 độ , 47 độ , 78 độ , ta có :
A. cos 14 độ < sin 47 độ < sin 78 độ
B. sin 47 độ < sin 78 độ < cos 14 độ
C. sin 78 độ < cos 14 độ < sin 47 độ
D. sin 47 độ < cos 14 độ < sin 78 độ
bài 1 : không dùng bảng số hoặc máy tính, hãy tính :
a, A = \(\cos^220^o+\cos^230^o+\cos^240^o+.....+\cos^270^o\)
b, B = \(\sin^25^o+\sin^225^o+\sin^245^o+\sin^265^o+\sin^285^o\)
c, C = \(\sin^210^o-\sin^220^o+\sin^230^o-\sin^240^o-\sin^250^o-\sin^270^o+\sin^280^o\)
bài 2 : cho tam giác ABC vuông tại A, biết sin B = \(\frac{1}{4}\) C. Tính C ?
Cho \(\tan=3\)
Chứng minh \(\frac{\sin^3\alpha-\cos^3\alpha}{\sin^2\alpha+\cos^2\alpha}=\frac{13}{14}\)
1) Cho sina = \(\dfrac{1}{4}\). Không tính số đo góc a , hãy tính : A = sin2 a + 3cos2 a -1
2) Chứng minh rằng \(\dfrac{2cos^2a-1}{cosa+sina}=cosa-sina\)
Chứng minh sin\(\dfrac{A}{2}< =\dfrac{BC}{AC+AB}\)
Bài 1: Cho tam giác ABC vuông tại A, có AB=30 cm và C=30 độ. Giải tam giác vuông ABC
Bài 2: Cho tam giác ABC vuông tại A, đường cao AH. Biết HB=3,6 cm HC=6,4 cm
a,Tính độ dài các đoạn thẳng AB, AC, AH
b, Kẻ HE vuông góc với AB, HF vuông góc với AC. Chứng minh AB.AE=AC.AF
Bài 3: Cho α là góc nhọn. Rút gọn biểu thức A=\(\sin^6\alpha+\cos^6\alpha+3\sin^2\alpha-\cos^2\alpha\)
Bài 4: Cho tam giác ABC vuông tại A, đường cao AH. Cho biết BH=a, HC=b . Chứng minh \(\sqrt{ab}\)≤\(\frac{a+b}{2}\)