Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen thi hong tham
Xem chi tiết
Nga Phạm
Xem chi tiết
Despacito
Xem chi tiết
Hoàng Thảo
13 tháng 9 2017 lúc 17:37

1)  \(\tan\alpha=\frac{\sin\alpha}{\cos\alpha}\)

bien doi ve phai ta co 

\(\frac{\sin\alpha}{\cos\alpha}=\frac{doi}{huyen}:\frac{ke}{huyen}=\frac{doi}{huyen}.\frac{huyen}{ke}=\frac{doi}{ke}=\tan\alpha\)

2) \(\cot\alpha=\frac{\cos\alpha}{\sin\alpha}\)

bien doi ve phai ta co

\(\frac{\cos\alpha}{\sin\alpha}=\frac{ke}{huyen}:\frac{doi}{huyen}=\frac{ke}{huyen}.\frac{huyen}{doi}=\frac{ke}{doi}=\cot\alpha\)

3) \(\tan\alpha.\cos\alpha=1\)

\(\frac{\cos\alpha}{\sin\alpha}.\frac{\sin\alpha}{\cos\alpha}=1\)

4) \(\sin^2\alpha+\cos^2\alpha=1\)

\(\frac{doi^2}{huyen^2}+\frac{ke^2}{huyen^2}=\frac{huyen^2}{huyen^2}=1\)( su dung dinh ly pitago ) 

Nguyen Khanh Linh
Xem chi tiết
Nguyen Khanh Linh
28 tháng 5 2019 lúc 14:27

GIup minh di ma!

Nguyen Khanh Linh
28 tháng 5 2019 lúc 19:38

Làm ơn có ai giúp mìn vs! Mìn sắp toi rùi !

lê thanh tùng
Xem chi tiết
Nguyễn Thiên Kim
20 tháng 7 2016 lúc 20:24

Trước tiên ta chứng minh bài toán phụ: công thức tính diện tích tam giác ABC có góc A nhọn \(S_{\Delta ABC}=\frac{1}{2}AB.AC.\sin A\)

Giải: Kẻ đường cao BH thì \(BH=AB.\sin A\)do đó \(S_{\Delta ABC}=\frac{1}{2}AC.BH=\frac{1}{2}AC.AB.\sin A\)

Ta quay trở lại việc giải bài toán trên. (hình bạn tự vẽ nhé!)

Ta có \(S_{DEF}=S_{ABC}-S_{AEF}-S_{BDF}-S_{CDE}\)suy ra \(\frac{S_{DEF}}{S_{ABC}}=1-\frac{S_{AEF}}{S_{ABC}}-\frac{S_{BDF}}{S_{ABC}}-\frac{S_{CDE}}{S_{ABC}}.\)

Áp dụng bài toán phụ ta có \(\frac{S_{AEF}}{S_{ABC}}=\frac{\frac{1}{2}AE.AF.\sin A}{\frac{1}{2}AB.AC.\sin A}=\frac{AE.AF}{AB.AC}=\frac{AF}{AC}.\frac{AE}{AB}\)

Trong các tam giác vuông ACF và ABE có: \(\cos A=\frac{AF}{AC}\)và \(\cos A=\frac{AE}{AB}\)

Do đó \(\frac{S_{AEF}}{S_{ABC}}=\cos^2A\)tương tự \(\frac{S_{BDF}}{S_{ABC}}=\cos^2B\)và \(\frac{S_{CDE}}{S_{ABC}}=\cos^2C\)

Vậy \(\frac{S_{DEF}}{S_{ABC}}=\left(1-\cos^2A\right)-\cos^2B-\cos^2C=\sin^2A-\cos^2B-\cos^2C.\)

Hay \(S_{DEF}=\left(\sin^2A-\cos^2B-\cos^2C\right).S_{ABC}=\sin^2A-\cos^2B-\cos^2C\)(do \(S_{ABC}=1\)).

Tung Nguyễn
Xem chi tiết
pikachu(^_^)
Xem chi tiết
Hồng Phúc
19 tháng 8 2021 lúc 21:00

a, \(\dfrac{1-sin2a}{1+sin2a}\)

\(=\dfrac{sin^2a+cos^2a-2sina.cosa}{sin^2a+cos^2a+2sina.cosa}\)

\(=\dfrac{\left(sina-cosa\right)^2}{\left(sina+cosa\right)^2}\)

\(=\dfrac{2sin^2\left(a-\dfrac{\pi}{4}\right)}{2sin^2\left(a+\dfrac{\pi}{4}\right)}\)

\(=\dfrac{sin^2\left(\dfrac{\pi}{4}-a\right)}{sin^2\left(a+\dfrac{\pi}{4}\right)}\)

\(=\dfrac{cos^2\left(\dfrac{\pi}{4}+a\right)}{sin^2\left(\dfrac{\pi}{4}+a\right)}=cot\left(\dfrac{\pi}{4}+a\right)\)

Hồng Phúc
19 tháng 8 2021 lúc 21:05

b, \(\dfrac{sina+sinb.cos\left(a+b\right)}{cosa-sinb.sin\left(a+b\right)}\)

\(=\dfrac{sina+sinb.cosa.cosb-sinb.sina.sinb}{cosa-sinb.sina.cosb-sinb.cosa.sinb}\)

\(=\dfrac{sina.\left(1-sin^2b\right)+sinb.cosa.cosb}{cosa.\left(1-sin^2b\right)-sinb.sina.cosb}\)

\(=\dfrac{sina.cos^2b+sinb.cosa.cosb}{cosa.cos^2b-sinb.sina.cosb}\)

\(=\dfrac{\left(sina.cosb+sinb.cosa\right).cosb}{\left(cosa.cosb-sinb.sina\right).cosb}\)

\(=\dfrac{sin\left(a+b\right)}{cos\left(a+b\right)}=tan\left(a+b\right)\)

Han Le
Xem chi tiết
Nguyễn Hồng Nhung
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 8 2022 lúc 9:17

a: Xét ΔABD vuông tại D vàΔACE vuông tại E có

góc A chung

Do đó: ΔABD đồng dạng với ΔACE

b: Xét tứ giác BEDC có góc BEC=góc BDC=90 độ

nên BEDC là tứ giác nội tiếp

=>góc BED+góc BCD=180 độ