Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
trần trang
Xem chi tiết
Quang Huy Điền
8 tháng 11 2019 lúc 22:22

1 ) \(â+b\ge2\sqrt{ab}\)

Tương tự : \(b+c\ge2\sqrt{bc}\)

\(c+a\ge2\sqrt{ca}\)

Nhân vế theo vế của 3 bpt dc dpcm

Dấu = xảy ra khi a = b = c

2) Nhân 2 vế bpt vs abc

Cm như 1)

3) \(a+2\ge2\sqrt{2a}\)

\(b+8\ge2\sqrt{8b}\)

\(a+b\ge2\sqrt{ab}\)

Nhân vế theo vế của 3 bpt dc dpcm

Dấu = xảy ra khi \(\left\{{}\begin{matrix}a=2\\b=8\\a=b\end{matrix}\right.\) (vô lí)

nên k xảy ra đẳng thức

Khách vãng lai đã xóa
Admin (a@olm.vn)
Xem chi tiết
Lê Hiền Trang
22 tháng 3 2021 lúc 16:33

Sử dụng bất đẳng thức Cô si cho hai số dương ta được

    a+b\ge2\sqrt{ab}a+b≥2ab    ;    b+c\ge2\sqrt{bc}b+c≥2bc   ;   c+a\ge2\sqrt{ca}c+a≥2ca

Nhân theo vế ba bất đẳng thức này ta được đpcm.

Khách vãng lai đã xóa
Nguyễn Thị Phương Linh
5 tháng 7 2021 lúc 19:19

Theo bất đẳng thức Cô si ta có : a+b ≥ \(2\sqrt{ab}\) 

b+c ≥ \(2\sqrt{bc}\) , c+a ≥ \(2\sqrt{ac}\)

Nhân từng vế của 3 bất đẳng thức cho nhau ta được 

(a+b)(b+c)(c+a) ≥ 8\(\sqrt{(a)^{2}(b)^{2}(c)^{2}}\)

=> (a+b)(b+c)(c+a) ≥ 8abc

Khách vãng lai đã xóa
Đỗ Đức Cao Thiêm
7 tháng 7 2021 lúc 19:27

theo  bất đẳng thứ cô si ta có a+b >2\(\sqrt{ab}\), b+c > 2\(\sqrt{bc}\), c+a>2\(\sqrt{bc}\)

nhân tất cả ta được (a+b)(b+c)(c+a)> 8 \(\sqrt{a^2b^2c^2}\)

suy ra (a+b)(b+c)(c+a)>8abc

 

Khách vãng lai đã xóa
Shinichi Kudo
Xem chi tiết

Vì \(a\ge0\),\(b\ge0\),\(c\ge0\),áp dụng bđt Cauchy cho 3 số dương a,b,c ta có

\(a+b\ge2\sqrt{ab}\)

\(b+c\ge2\sqrt{bc}\)

\(c+a\ge2\sqrt{ac}\)

Nhân từng vế bđt trên =>đpcm

Joker
7 tháng 5 2019 lúc 23:03

\(\text{có:}\frac{k}{n}+\frac{n}{k}\ge2\Leftrightarrow\frac{k}{n}-2+\frac{n}{k}\ge0\Leftrightarrow\frac{k}{n}-2\sqrt{\frac{k}{n}}.\sqrt{\frac{n}{k}}+\frac{n}{k}\ge0\Leftrightarrow\left(\sqrt{\frac{k}{n}}-\sqrt{\frac{n}{k}}\right)^2\ge0\forall k,n>0\)

\(\left(a+b\right).\left(b+c\right).\left(c+a\right)\ge8abc\)

\(\Leftrightarrow\left(ab+ac+b^2+bc\right).\left(a+c\right)\ge8abc\)

\(\Leftrightarrow a^2b+a^2c+ab^2+abc+abc+ac^2+b^2c+bc^2\ge8abc\)

\(\Leftrightarrow2+\frac{a}{c}+\frac{a}{b}+\frac{b}{c}+\frac{c}{b}+\frac{b}{a}+\frac{c}{a}\ge8\)

\(\Leftrightarrow2+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{c}{b}+\frac{b}{c}\right)\ge8\)(luôn đúng với mọi a,b,c >=0)

Joker
7 tháng 5 2019 lúc 23:06

sửa dòng đầu: \(k,n\ge0\)

Nguyễn Minh Đăng
Xem chi tiết
Edogawa Conan
30 tháng 7 2020 lúc 8:53

Đặt a2 = x; b2 = y; c2 = z

Khi đó, ta có: (x + y)(y + z)(z + x) \(\ge\)xyz

<=> (xy + xz + y2 + yz)(z + x) - 8xyz \(\ge\)0

<=> xyz + xz2 + y2z + yz2 + x2y + x2z + y2x + xyz - 8xyz \(\ge\)0

<=> (xz2 +xy2) + (y2z + zx2) + (yz2 + yx2) - 6xyz \(\ge\)0

<=> (xz2 - 2xyz + xy2) + (y2z + zx- 2xyz) + (yz+ yx2 - 2xyz) \(\ge\)0

<=> x(z2 - 2yz + y2) + z(y2 + x2 - 2xy) + y(z2 + x2 - 2xz) \(\ge\) 0

<=> x(z - y)2 + z(y - x)2 + y(z - x)2 \(\ge\)0

hay a2(c2 - b2)2 + c2(b2 - a2)2 + b2(c2 - a2)2 \(\ge\)0 (luôn đúng với mọi a;b;c)

=> Đpcm

Khách vãng lai đã xóa
Phan Nghĩa
30 tháng 7 2020 lúc 8:44

Đặt \(a^2;b^2;c^2\rightarrow x;y;z\left(x;y;z\ge0\right)\)

Khi đó bài toán trở thành \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8xyz\)

\(< =>\left(x+y\right)\left(y+z\right)\left(z+x\right)-8xyz\ge0\)

\(< =>a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2\ge0\)*đúng*

Dấu "=" xảy ra khi và chỉ khi \(x=y=z\)hay \(a^2=b^2=c^2\)

Khách vãng lai đã xóa
Kiyotaka Ayanokoji
30 tháng 7 2020 lúc 8:44

Áp dụng BĐT Cauchy-Schwarz ta có:

\(a^2+b^2\ge2ab\)

Tương tự \(b^2+c^2\ge2bc\)

                \(c^2+a^2\ge2ca\)

\(\Rightarrow\left(a^2+b^2\right).\left(b^2+c^2\right).\left(c^2+a^2\right)\ge8a^2b^2c^2\)

Dấu "=" xảy ra khi\(a=b=c\)

Học tốt 

Khách vãng lai đã xóa
Nguyễn Thanh
Xem chi tiết
Đinh Đức Hùng
26 tháng 8 2017 lúc 13:49

Do a;b;c > 0 ; Áp dụng bất đẳng thức Cauchy - Schwarz ta có :

\(a+b\ge2\sqrt{ab};b+c\ge2\sqrt{bc};c+a\ge2\sqrt{ac}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}=8\sqrt{a^2b^2c^2}=8abc\) (đpcm)

Sách Giáo Khoa
Xem chi tiết
Kuro Kazuya
8 tháng 4 2017 lúc 11:54

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left\{{}\begin{matrix}a+b\ge2\sqrt{ab}\\b+c\ge2\sqrt{bc}\\c+a\ge2\sqrt{ca}\end{matrix}\right.\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\) ( đpcm )

Dấu " = " xảy ra khi \(a=b=c=1\)

Phạm Kim Oanh
Xem chi tiết
Tú Nguyễn
Xem chi tiết
Phạm Minh Quang
8 tháng 2 2020 lúc 16:18

Ta có: \(a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)

a) \(a^4+b^4+c^4+d^4\ge2a^2b^2+2c^2d^2\ge4abcd\)

b) \(a^2+1\ge2a,b^2+1\ge2b,c^2+1\ge2c\)

\(\Rightarrow\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge8abc\)

c) \(a^2+4\ge4a,b^2+4\ge4b,c^2+4\ge4c,d^2+4\ge4d\)

\(\Rightarrow\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\left(d^2+4\right)\ge256abcd\)

Khách vãng lai đã xóa
bach nhac lam
8 tháng 2 2020 lúc 16:25

a) \(a^4+b^4+c^4+d^4\ge2a^2b^2+2c^2d^2=2\left[\left(ab\right)^2+\left(cd\right)^2\right]\ge2\cdot2abcd=4abcd\)

b) \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a\cdot2b\cdot2c=8abc\)

c) \(\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\left(d^2+4\right)\ge4a\cdot4b\cdot4c\cdot4d=256abcd\)

Khách vãng lai đã xóa
tth_new
Xem chi tiết

a,b,c khong am nen (ab+bc+ca)...>=9/4 co the dung don bien nhe ban

con cau tra loi thi khong bit

Nguyễn Khang
10 tháng 8 2019 lúc 16:37

nguyễn xuân trợ: bớt xàm đi bạn, cái bạn hỏi đã bảo chúng ta dùng phương pháp dồn biến rồi nha!

Dồn biến làm gì , dùng Chebyshev với Nesbit là ra :)

Giả sử \(a\ge b\ge c\)\(\Rightarrow\hept{\begin{cases}a+b\ge a+c\ge b+c\\a\left(b+c\right)\ge b\left(a+c\right)\ge c\left(a+b\right)\end{cases}}\)

\(BĐT\Leftrightarrow\left[a\left(b+c\right)+b\left(a+c\right)+c\left(a+b\right)\right]\left(\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(a+c\right)^2}+\frac{1}{\left(b+c\right)^2}\right)\)

ÁP DỤNG BĐT CHEBYSHEV\(BĐT\ge3\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)\ge\frac{9}{2}\)(áp dụng bđt Nesbit) "chứng minh dùng AM-GM"