Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vo Ngoc Bao Trinh
Xem chi tiết
hya_seije_jaumeniz
25 tháng 7 2018 lúc 17:24

a) Đặt  \(A=-x^2+9x-12\)

\(-A=x^2-9x+12\)

\(-A=\left(x^2-9x+\frac{81}{4}\right)-\frac{33}{4}\)

\(-A=\left(x-\frac{9}{2}\right)^2-\frac{33}{4}\)

Mà  \(\left(x-\frac{9}{2}\right)^2\ge0\forall x\)

\(\Rightarrow-A\ge-\frac{33}{4}\Leftrightarrow A\le\frac{33}{4}\)

Dấu "=" xảy ra khi :  \(x-\frac{9}{2}=0\Leftrightarrow x=\frac{9}{2}\)

Vậy  \(A_{Max}=\frac{33}{4}\Leftrightarrow x=\frac{9}{2}\)

b) Đặt \(B=2x^2+10x-1\)

\(B=2\left(x^2+5x+\frac{25}{4}\right)-\frac{29}{4}\)

\(B=2\left(x+\frac{5}{2}\right)^2-\frac{29}{4}\)

Mà  \(\left(x+\frac{5}{2}\right)^2\ge0\forall x\Rightarrow2\left(x+\frac{5}{2}\right)^2\ge0\forall x\)

\(\Rightarrow B\ge-\frac{29}{4}\)

Dấu "=" xảy ra khi :  \(x+\frac{5}{2}=0\Leftrightarrow x=-\frac{5}{2}\)

Vậy  \(B_{Min}=-\frac{29}{4}\Leftrightarrow x=-\frac{5}{2}\)

hya_seije_jaumeniz
25 tháng 7 2018 lúc 17:30

c) Đặt  \(C=\left(2x+6\right)\left(x-1\right)\)

\(C=2x^2-2x+6x-6\)

\(C=2x^2+4x-6\)

\(C=2\left(x^2+2x+1\right)-8\)

\(C=2\left(x+1\right)^2-8\)

Mà  \(\left(x+1\right)^2\ge0\forall x\Rightarrow2\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow C\ge-8\)

Dấu "=" xảy ra khi :  \(x+1=0\Leftrightarrow x=-1\)

Vậy  \(C_{Min}=-8\Leftrightarrow x=-1\)

d) Đặt  \(D=3x-2x^2\)

\(-2D=4x^2-6x\)

\(-2D=\left(4x^2-6x+\frac{9}{4}\right)-\frac{9}{4}\)

\(-2D=\left(2x-\frac{3}{2}\right)^2-\frac{9}{4}\)

Mà  \(\left(2x-\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow-2D\ge-\frac{9}{4}\)

\(\Leftrightarrow D\le\frac{9}{8}\)

Dấu "=" xảy ra khi :  \(2x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{4}\)

Vậy  \(D_{Max}=\frac{9}{8}\Leftrightarrow x=\frac{3}{4}\)

Nguyễn Thái Thùy Trang
Xem chi tiết
Vũ Quang Vinh
3 tháng 7 2017 lúc 10:04

Bài 2:
Ta thấy:
\(-2x\left(x+5\right)+\left(2x^2+4\right)+10x\)
\(=-2x^2+-10x+2x^2+4+10x\)
\(=\left(-2x^2+2x^2\right)+\left(-10x+10x\right)+4\)
\(=0+0+4\)
\(=4\)
Vậy biểu thức -2x ( x + 5 ) + ( 2x2 + 4 ) + 10x có giá trị bằng 4

l҉o҉n҉g҉ d҉z҉
3 tháng 7 2017 lúc 9:58

Ta có : (3x + 1)2 \(\ge0\forall x\)

=> 2(3x + 1)2 \(\ge0\forall x\)

=> 3 - 2(3x + 1)2 \(\le3\forall x\)

Vậy GTLN của A là 3 khi x = \(-\frac{1}{3}\)

Vũ Quang Vinh
3 tháng 7 2017 lúc 10:00

Bài 1:
Vì \(\left(3x+1\right)^2\ge0\)    ( mọi x )
\(\Rightarrow2\left(3x+1\right)^2\ge0\)    ( mọi x )
\(\Rightarrow3-2\left(3x+1\right)^2\le3\)    ( mọi x )
=> GTLN của biểu thức A = 3 - 2 ( 3x + 1 )2 là 3 khi và chỉ khi:
\(2\left(3x+1\right)=0\)
\(\Rightarrow3x+1=0\)
\(\Rightarrow3x=-1\)
\(\Rightarrow x=\frac{-1}{3}\)
Vậy GTLN của biểu thức A = 3 - 2 ( 3x + 1 )2 là 3 khi và chỉ khi x = -1/3

Thảo My Trần
Xem chi tiết
Lấp La Lấp Lánh
7 tháng 10 2021 lúc 12:07

1) \(P=-2x^2-12x=-2\left(x^2+6x+9\right)+18=-2\left(x+3\right)^2+18\le18\)

\(maxP=18\Leftrightarrow x=-3\)

2) \(Q=-5x^2+10x=-5\left(x^2-2x+1\right)+5=-5\left(x-1\right)^2+5\le5\)

\(maxQ=5\Leftrightarrow x=1\)

3) \(A=-3x^2+12x-6=-3\left(x^2-4x+4\right)+6=-3\left(x-2\right)^2+6\le6\)

\(maxA=6\Leftrightarrow x=2\)

4) \(B=-2x^2-24x+12=-2\left(x^2+12x+36\right)+84=-2\left(x+6\right)^2+84\le84\)

\(maxB=84\Leftrightarrow x=-6\)

afa2321
Xem chi tiết
Trên con đường thành côn...
12 tháng 7 2021 lúc 17:01

undefined

Nguyễn Lê Phước Thịnh
12 tháng 7 2021 lúc 23:39

Bài 2: 

a) Ta có: \(\left|2x-5\right|\ge0\forall x\)

\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)

\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)

yunaaaa
Xem chi tiết
Trịnh Long
1 tháng 7 2021 lúc 7:45

Bằng 0 chứ nhỉ em ?

(x-5) . (2x-4)= 0

\(\left[{}\begin{matrix}x-5=0\\2x-4=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=5\\2x=4\end{matrix}\right.< =>\left[{}\begin{matrix}x=5\\x=2\end{matrix}\right.\)

Angela chây hốp
Xem chi tiết
daolehoang
24 tháng 12 2018 lúc 19:24

Đêm Noel..Đêm Noel~~~...Ma gõ cửa nhà em:))...Em đi ra~~~~Phi xe ga......Đâm chết năm con gà=)))))))...hố hố...... ~Merry Christmas~ ^-^ Noel đến đít rùi:))

Tạ Thu Hương
Xem chi tiết
Minh Nguyệt
26 tháng 7 2020 lúc 20:35
https://i.imgur.com/0AA3SFZ.jpg
Nguyễn Ngọc Lộc
26 tháng 7 2020 lúc 20:37

a, Ta có : \(-x^2+2x-1-3\)

\(=-\left(x-1\right)^2-3\)

Ta thấy : \(\left(x-1\right)^2\ge0\forall x\)

=> \(-\left(x-1\right)^2-3\le-3\forall x\)

Vậy Max = -3 <=> x = 1 .

b, Ta có : \(-x^2-4x-4+4\)

\(=-\left(x+2\right)^2+4\)

Ta thấy : \(\left(x+2\right)^2\ge0\forall x\)

=> \(-\left(x+2\right)^2+4\le4\forall x\)

Vậy Max = 4 <=> x = -2 .

c, Ta có : \(-9x^2+24x-16-2\)

\(=-9\left(x^2-\frac{2.4x}{3}+\frac{16}{9}\right)-2\)

\(=-9\left(x-\frac{4}{3}\right)^2-2\)

Ta thấy : \(\left(x-\frac{4}{3}\right)^2\ge0\forall x\)

=> \(-9\left(x-\frac{4}{3}\right)^2-2\le-2\forall x\)

Vậy Max = -2 <=> x = \(\frac{4}{3}\) .

d, Ta có : \(-x^2+4x-4+3\)

\(=-\left(x-2\right)^2+3\)

Ta thấy : \(\left(x-2\right)^2\ge0\forall x\)

=> \(-\left(x-2\right)^2+3\le3\forall x\)

Vậy Max = 3 <=> x = 2 .

e, Ta có : \(-x^2+2x-1-4y^2-4y-1+7\)

\(=-\left(x-1\right)^2-4\left(y^2+y+\frac{1}{4}\right)+7\)

\(=-\left(x-1\right)^2-4\left(y+\frac{1}{2}\right)^2+7\)

Ta thấy : \(\left\{{}\begin{matrix}\left(x-1\right)^2\\\left(y+\frac{1}{2}\right)^2\end{matrix}\right.\) \(\ge0\forall xy\)

=> \(\left\{{}\begin{matrix}-\left(x-1\right)^2\\-4\left(y+\frac{1}{2}\right)^2\end{matrix}\right.\) \(\le0\forall xy\)

=> \(=-\left(x-1\right)^2-4\left(y+\frac{1}{2}\right)^2\le0\forall xy\)

=> \(=-\left(x-1\right)^2-4\left(y+\frac{1}{2}\right)^2+7\le7\forall xy\)

Vậy Max = 7 <=> \(\left\{{}\begin{matrix}x=1\\y=-\frac{1}{2}\end{matrix}\right.\)

Phong Trần
Xem chi tiết
Phong Trần
27 tháng 2 2022 lúc 15:40

m.n ơi giúp mk 1 hoặc 2 câu đc ko ạ mk cần gấp lắm mà mk ko bt cách lm

Khuyên Đặng
Xem chi tiết
Nắng Hạ
30 tháng 4 2018 lúc 10:13

\(M=x^2+y^2-xy-2x-2y+2\)

\(\Leftrightarrow M=\left(\frac{1}{2}x^2-xy+\frac{1}{2}y^2\right)+\left(\frac{1}{2}x^2-2x+2\right)+\left(\frac{1}{2}y^2-2y+2\right)-2\)

\(\Leftrightarrow M=\frac{1}{2}\left(x-y\right)^2+\frac{1}{2}\left(x-2\right)^2+\frac{1}{2}\left(y-2\right)^2-2\ge-2\)\(\forall\)\(x\)

"=" khi x=y=2

Vậy Min M là -2 khi x=y=2

_Guiltykamikk_
30 tháng 4 2018 lúc 11:43

\(M=x^2+y^2-xy-2x-2y+2\)

\(4M=4x^2+4y^2-4xy-8x-8y+8\)

\(4M=\left(4x^2-4xy+y^2\right)+3y^2-8x-8y+8\)

\(4M=\left[\left(2x-y\right)^2-2\left(2x-y\right)\times2+4\right]+3y^2-12y+4\)

\(4M=\left(2x-y-2\right)^2+3\left(y^2-4y+4\right)-8\)

\(4M=\left(2x-y-2\right)^2+3\left(y-2\right)^2-8\)

\(\Rightarrow4M\ge-8\)

\(\Leftrightarrow M\ge-2\)

Dấu "=" xảy ra khi :

_Guiltykamikk_
30 tháng 4 2018 lúc 11:51

Dấu bằng xảy ra khi :

 2x - y - 2 = 0                   x = 2

                            <=>

 y - 2 = 0                          y = 2

Vậy Min M = - 2 khi x=y=2