Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dũng Senpai
Xem chi tiết
Minh Hiếu
Xem chi tiết
Akai Haruma
14 tháng 10 2021 lúc 21:05

Lời giải:

a.

PT $\Leftrightarrow (x+3)^2=2016^{2020}-17^{91}+9$

Ta thấy: $2016^{2020}-17^{91}+9\equiv 0-(-1)^{91}+0\equiv -1\equiv 2\pmod 3$

Mà 1 scp thì chia $3$ chỉ dư $0$ hoặc $1$ nên pt vô nghiệm.

b.

$x^2=2016(y-1)^2-2017^{2019}\equiv 0-1^{2019}\equiv 3\pmod 4$
Mà 1 scp chia $4$ chỉ dư $0$ hoặc $1$ nên vô lý.

Vậy pt vô nghiệm.

c.

$(x-1)^2=2017^{2017}+1\equiv 1^{2017}+1\equiv 2\pmod 4$
Mà 1 scp khi chia cho $4$ chỉ dư $0$ hoặc $1$ nên vô lý

Vậy pt vô nghiệm

d.

$(x+2)^2=2018^{10}+4\equiv (-1)^{10}+1\equiv 2\pmod 3$

Mà 1 scp khi chia $3$ dư $0$ hoặc $1$ nên vô lý

Vậy pt vô nghiệm.

chi lê
Xem chi tiết
Minh Anh
2 tháng 9 2016 lúc 21:14

\(\left|x-2015\right|^{2016}+\left|x-2016\right|^{2017}=1\)

Có: \(\left|x-2015\right|^{2016}\ge0;\left|x-2016\right|^{2017}\ge0\)

TH1: \(\hept{\begin{cases}\left|x-2015\right|^{2016}=1\\\left|x-2016\right|^{2017}=0\end{cases}}\Rightarrow\hept{\begin{cases}\left|x-2015\right|=1\\\left|x-2016\right|=0\end{cases}}\)

THa: \(x-2015=-1\Rightarrow x=2014\)

Thay vào: \(2014-2016\ne0\) ( loại)

THb: \(x-2015=1\Rightarrow x=2016\)

Thay vào:  \(2016-2016=0\)( chọn )

TH2: \(\hept{\begin{cases}\left|x-2015\right|^{2016}=0\\\left|x-2016\right|^{2017}=1\end{cases}}\Rightarrow\hept{\begin{cases}\left|x-2015\right|=0\\\left|x-2016\right|=1\end{cases}}\)

THc: \(x-2016=-1\Rightarrow x=2015\)

Thay vào:  \(2015-2015=0\)( chọn )

THd: \(x-2016=1\Rightarrow x=2017\)

Thay vào: \(2017-2015\ne0\)

Vậy: x = 2016 hoặc x = 2015

Thái Viết Nam
2 tháng 9 2016 lúc 20:55

x=2015

o0o I am a studious pers...
2 tháng 9 2016 lúc 21:05

\(\left|x-2015\right|^{2016}\ge0\)

\(\left|x-2016\right|^{2017}\ge0\)

\(\Rightarrow\orbr{\begin{cases}x=2015\\x=2016\end{cases}}\)

™ˆ†ìñh♥Ảøˆ™
Xem chi tiết
♥➴Hận đời FA➴♥
Xem chi tiết
Nguyễn Ngọc Anh
Xem chi tiết
Lương Ngọc Anh
2 tháng 5 2016 lúc 12:18

Đặt 2x2+x-2015=a; x2-5x-2016=b

phương trình tương đương a2+4b2=4ab

=> a2-4ab+4b2=0

=> (a-2b)2=0

=> a=2b

vậy 2x2+x-2015=2*(x2-5x-2016)

=> x=\(\frac{-2017}{11}\)

Minh Hiếu
Xem chi tiết
Nguyễn Hoàng Minh
5 tháng 10 2021 lúc 21:04

a, TK:

(x lẻ do \(2y^2-8y+3=2\left(y^2-4y\right)+3=x^2\) lẻ)

\(b,\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2+4y+4\right)=9\\ \Leftrightarrow\left(x-2\right)^2+\left(y+2\right)^2=9\)

Vậy pt vô nghiệm do 9 ko phải tổng 2 số chính phương

 

Thanh Nguyenthi
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 3 2020 lúc 15:16

\(\Leftrightarrow\left(2x^2+x-2017\right)^2-4\left(2x^2+x-2017\right)\left(x^2-5x-2016\right)+4\left(x^2-5x-2016\right)^2=0\)

\(\Leftrightarrow\left(2x^2+x-2017-2\left(x^2-5x-2016\right)\right)^2=0\)

\(\Leftrightarrow11x-6049=0\)

\(\Rightarrow x=\frac{6049}{11}\)

Khách vãng lai đã xóa
乡☪ɦαทɦ💥☪ɦųα✔
Xem chi tiết
Nguyễn Minh Đăng
6 tháng 10 2020 lúc 21:18

Xét: \(\sqrt{1+n^2+\frac{n^2}{\left(n+1\right)^2}}=\sqrt{\frac{\left(n+1\right)^2+n^2\left(n+1\right)^2+n^2}{\left(n+1\right)^2}}\) (với \(n\inℕ\))

\(=\sqrt{\frac{n^2+2n+1+n^4+2n^3+n^2+n^2}{\left(n+1\right)^2}}\)

\(=\sqrt{\frac{n^4+n^2+1+2n^3+2n^2+2n}{\left(n+1\right)^2}}\)

\(=\sqrt{\frac{\left(n^2+n+1\right)^2}{\left(n+1\right)^2}}=\frac{n^2+n+1}{n+1}=n+\frac{1}{n+1}\)

Áp dụng vào ta tính được: \(\sqrt{1+2015^2+\frac{2015^2}{2016^2}}+\frac{2015}{2016}=2015+\frac{1}{2016}+\frac{2015}{2016}\)

\(=2015+1=2016\)

Khi đó: \(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=2016\)

\(\Leftrightarrow\left|x-1\right|+\left|x-2\right|=2016\)

Đến đây xét tiếp các TH nhé, ez rồi:))

Khách vãng lai đã xóa
The Angry
6 tháng 10 2020 lúc 21:18

chẳng biết đúng ko,mới lớp 5

\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=\sqrt{1+2015^2+\frac{2015^2}{2016^2}}+\frac{2015}{2016}\)

\(\sqrt{x^2}-\sqrt{2x}+\sqrt{1}+\sqrt{x^2}-\sqrt{4x}+\sqrt{4}=\sqrt{1}+\sqrt{2015^2}+\sqrt{\frac{2015^2}{2016^2}}+\frac{2015}{2016}\)

\(\sqrt{x^2}-\sqrt{6x}+3=1+2015+\frac{2015}{2016}+\frac{2015}{2016}\)

\(x-\sqrt{6x}=1+\frac{2015}{1+2016+2016}-3\)

\(x-\sqrt{6x}=2-\frac{2015}{4033}\)

\(x-\sqrt{6x}=\frac{6051}{4033}\)

Khách vãng lai đã xóa
Khánh Ngọc
6 tháng 10 2020 lúc 21:24

pt <=>\(\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=\sqrt{1+2.2015+2015^2-2.2015+\frac{2015^2}{2016^2}}+\frac{2015}{2016}\)

\(\Leftrightarrow\left(x-1\right)+\left(x-2\right)=\sqrt{2016^2-2.2016.\frac{2015}{2016}+\frac{2015^2}{2016^2}}+\frac{2015}{2016}\)

\(\Leftrightarrow2x-3=\sqrt{\left(2016-\frac{2015}{2016}\right)^2}+\frac{2015}{2016}\)

\(\Leftrightarrow2x-3=2016-\frac{2015}{2016}+\frac{2015}{2016}\)

\(\Leftrightarrow2x-3=2016\)

\(\Leftrightarrow2x=2019\)

\(\Leftrightarrow x=\frac{2019}{2}\)

Khách vãng lai đã xóa