Cho tam giác ABC vuông tại A, đường cao AD
a/Chứng minh tam giác ABC và tam giác DAC đồng dạng
b/Cho AB=8, BC=10. Tính DA và DB
c/ AB^3/AC^3=BE/CF
Cho tam giác cân ABC ( AB = AC ). Vẽ 3 đường cao AD,BE,CF(D \(\in\) BC, E \(\in\) AC ,F \(\in\) AB).
a) Chứng minh tam giác DAC và tam giác EBC đồng dạng.
b) Cho BC = 6cm, AC = 9cm. Tính độ dài CE,
c) Chứng minh CE = BF, EF//BC.
a,Xét tam giác DAC và tam giác EBC ta có:
\(\widehat{BEC}=\widehat{ADC}=90^0\)
C chung
tam giác DAC đồng dạng tam giác EBC
b, AD là đường cao vừa là đường phân giác
BD = DC
DC = \(\dfrac{BC}{2}\) =\(\dfrac{6}{3}=2\)
Vì tam giác DAC đồng dạng tam giác EBC suy ra \(\dfrac{AC}{BC}=\dfrac{DC}{EC}\Leftrightarrow EC=\dfrac{DC.BC}{AC}=\dfrac{3.6}{9}=2\)
c, vì đường cao BE,CF nên \(\widehat{BEC}=\widehat{CFB}=90^o\)
Xét tam giác BEC và tam giác CFB có
BC chung
\(\widehat{CBA}=\widehat{BCA}\)
tam giác BEC = tam giác CFB ( cạnh huyền góc nhọn )
CE = BF ( đpcm )
Ta có : AB = AC , CE = BF
AB = BF + AF ; AC = CE + AE
suy ra AF = AE => tam giác AEF cân tại A
\(\widehat{ÀEF}=\dfrac{180^o-\widehat{A}}{2}\) ( 1 )
tam giác ABC cân tại A suy ra \(\widehat{ACB}=\dfrac{180^o-\widehat{A}}{2}\) ( 2 )
TỪ ( 1 ) và ( 2 ) ta có \(\widehat{AEF}=\widehat{ACB}\)
suy ra EF//BC ( có cặp góc đồng vị bằng nhau )
a) Xét ΔDAC vuông tại D và ΔEBC vuông tại E có
\(\widehat{ECB}\) chung
Do đó: ΔDAC∼ΔEBC(g-g)
Cho tam giác ABC (AB<AC) có đường cao AD (D thuộc BC)
a/ Chứng minh hai tam giác DAB và ACB đồng dạng
b/ Phân giác góc ABC cắt AC tại E, từ C vẽ đường thằng vuông góc với đường thẳng BE tại F chứng minh AE.AB=EC.BD
c/ Kẻ FH vuông AC tại H chứng minh hai góc BCF và HCF bằng nhau
d/ I là trung điểm BC, chứng minh I,H,F thẳng hàng
Sửa đề: ΔABC vuông tại A
a) Xét ΔDAB vuông tại D và ΔACB vuông tại A có
\(\widehat{ABC}\) chung
Do đó: ΔDAB\(\sim\)ΔACB(g-g)
b) Xét ΔABC có
BE là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AE}{EC}=\dfrac{AB}{BC}\)(Định lí đường phân giác của tam giác)(1)
Ta có: ΔDAB\(\sim\)ΔACB(cmt)
nên \(\dfrac{AB}{BC}=\dfrac{BD}{BA}\)(Các cặp cạnh tương ứng tỉ lệ)(2)
Từ (1) và (2) suy ra \(\dfrac{AE}{EC}=\dfrac{BD}{AB}\)
hay \(AE\cdot AB=BD\cdot EC\)(đpcm)
Cho tam giác ABC vuông tại A, AB<AC, và có đường cao AH (H thuộc BC).
a) Chứng minh tam giác ABH và tam giác CBA đồng dạng
b) Dường phân giác của góc ABC cắt AC tại K và cắt AH tại M. Chứng Minh BA.BM = BH.BK và BA.BK = BC.BM
c) Vẽ KD vuông góc với BC tại D. Chứng minh BA/DH = BC/DC
d) Gọi T là điểm đối xứng với H qua M và V là điểm đối xứng với D qua K. Chứng minh ba điểm B, T, V thẳng hàng
Bạn nào biết giúp mình với nhé:)))
cho tam giác ABC vuông tại A. kẻ đường cao AH. Biết AB=15cm, AC=20cm.
a) chứng minh tam giác AHB và tam giác CAB là hai tam giác đồng dạng
b) tính BC, AH
c) gọi M là trung điểm cạch BC. tính diện tích tam gác AHM.
a) Xét ΔAHB và ΔCAB có
Góc B chung
Góc AHB= Góc A=90o
=> ΔAHB ∼ ΔCAB (gg)
b) Xét ΔABC có Góc A=90o
=> AB2 + AC2=BC2
=>152+202=BC2
=> BC=25 cm
ta lại có SΔABC =\(\dfrac{AB.AC}{2}=\dfrac{BC.AH}{2}\)
=>\(AB.AC=BC.AH=>15.20=25.AH\)=>AH=12cm
c) M là trung điểm của BC=> BM=\(\dfrac{1}{2}BC=\dfrac{1}{2}.25=12,5\) cm
Xét ΔABH có góc BHA=90o
=> HB2+AH2=AB2
=> BH2+122=152=> BH=9cm
ta có AH⊥BC => AH⊥BM ( M∈BC)
SΔAHM=SΔABM-SΔABH
=> SΔAHM=\(\dfrac{12.12,5}{2}-\dfrac{12.9}{2}=21cm^2\)
cho tam giác ABC vuông tại A có AB=5cm AC=8cm.Kẻ đường cao AH
a) chứng minh tam giác ABC đồng dạng tam giác HBA đồng dạng
b) chứng minh AH.AH=HB.HC
c)tia phân giác của góc ACB cắt AH tại E, cắt AB tại D. tính diện tích của tam giác ACD và tam giác HCE
d) kẻ phân giác AK (K thuộc BC) cảu góc BAH, cắt CD tại F. chứng minh rằng DK//AH và tam giác AEF đồng dạng tam giác CEH
GIÚP MÌNH VỚI
a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{ABC}\) chung
Do đó: ΔHBA\(\sim\)ΔABC(g-g)
b) Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
\(\widehat{HBA}=\widehat{HAC}\left(=90^0-\widehat{C}\right)\)
Do đó: ΔHBA\(\sim\)ΔHAC(g-g)
Suy ra: \(\dfrac{HB}{HA}=\dfrac{HA}{HC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AH^2=HB\cdot HC\)(đpcm)
1) Cho tam giác ABC vuông tại A , AB < AC , đường phân giác AD . Đường vuông góc với DC tại D cắt AC ở E . Chứng minh rằng:
a) Tam giác ABC và tam giác DEC đồng dạng
b) DE=BC
Hình như đề sai, đường vuông góc với DC tại D là sao?
bài 5 cho tam giác ABC vuông tại A. kẻ đường cao AH. Biết AB=15cm, AC=20cm
a) Chứng minh tam giác AHB và tam giác CAB là hai tam giác đồng dạng
b) Tính BC, AH.
C) Gọi M là trung điểm cạnh BC. Tính diện tích tam giác AHM.
a) Xét ΔAHB và ΔCAB có
Góc B chung
Góc AHB= Góc A=90o
=> ΔAHB ∼ ΔCAB (gg)
Cho tam giác ABC vuông tại A có AB = 6cm ,AC=8cm,đường cao AH
a) Chứng minh tam giác ABH và tam giác CBA đồng dạng
b) Tính BC , AH
c) Gọi M,N lần lượt là hình chiếu của H trên AB và AC. I là trung điểm của BC chứng minh rằng AI vuông góc với MN
Cho tam giác ABC vuông tại A AB = 15 cm AC = 20 cm .Vẽ tia Ax song song với BC và tia By vuông góc với BC tại B tia Ax cắt BC tại D
a chứng minh tam giác ABC đồng dạng với tam giác DAB
b tính BC, DA,DA
C,AB cắt AC tại I. tính diện tích tam giác BIC