Gải phương trình
\(\sqrt{x+2+2\sqrt{x+7}}-\sqrt{x+1}=4\)
ae gải hộ mk cái: giải phương trình
1: \(\sqrt{2x^2+x+6}+\sqrt{x^2+x+2}=\frac{x^2+4}{x}\)
2: \(\sqrt{x+3}-\sqrt{1-x}=1+x\)
3: \(\sqrt{x-2}+\sqrt{4-x}=2x^2-5x-1\)
4:\(\sqrt{x^2-x+1}-\sqrt{x^2+x+1}=2x\)
5:\(\sqrt{3x^2-7x+3}-\sqrt{x^2-2}=\sqrt{3x^2-5x-1}\)
6:\(\sqrt{\frac{42}{5-x}}+\sqrt{\frac{60}{7-x}}=6\)
7:\(\sqrt{x+\frac{3}{x}}=\frac{x^2+7}{2\left(x+1\right)}\)
mọi người jup mình giải đi khó wá
1 bài thui cx đc
Gải phương trình\(\frac{1}{\sqrt{x+3}}+\frac{1}{\sqrt{3x+1}}=\frac{2}{1+\sqrt{x}}\)
Cảm ơn các bạn nhiều!
\(Đkxđ:x\ge0\)
Ta có: Bất phương trình tương đương với:
\(\left(1+\sqrt{x}\right)\left(\frac{1}{\sqrt{x+3}}+\frac{1}{\sqrt{3x+1}}\right)=2\)
Áp dụng BĐT Cô - si ta có:
\(\frac{1}{\sqrt{3x+1}}=\sqrt{\frac{1}{x+1}.\frac{x+1}{3x+1}}\le\frac{1}{2}\left(\frac{1}{x+1}+\frac{x+1}{3x+1}\right)\)
\(\sqrt{\frac{x}{3x+1}}=\sqrt{\frac{1}{2}.\frac{2x}{3x+1}}\le\frac{1}{2}\left(\frac{1}{2}+\frac{2x}{3x+1}\right)\)
\(\Rightarrow\frac{1+\sqrt{x}}{\sqrt{3x+1}}\le\frac{1}{2}\left(\frac{1}{x+1}+\frac{1}{2}+1\right)=\frac{1}{2}\left(\frac{1}{x+1}+\frac{3}{2}\right)\left(1\right)\)
\(\frac{1}{\sqrt{x+3}}=\sqrt{\frac{1}{2}.\frac{2}{x+3}}\le\frac{1}{2}\left(\frac{1}{2}+\frac{2}{x+3}\right)\)
\(\frac{\sqrt{x}}{\sqrt{x+3}}=\sqrt{\frac{x}{x+1}.\frac{x+1}{x+3}}\le\frac{1}{2}\left(\frac{x}{x+1}+\frac{x+1}{x+3}\right)\)
\(\Rightarrow\frac{1+\sqrt{x}}{\sqrt{x+3}}\le\frac{1}{2}\left(\frac{x}{x+1}+\frac{3}{2}\right)\left(2\right)\)
Từ: \(\left(1\right)\left(2\right)\Rightarrow\left(1+\sqrt{x}\right)\left(\frac{1}{\sqrt{x+3}}+\frac{1}{\sqrt{3x+1}}\right)\le\frac{1}{2}\left(\frac{1}{x+1}+\frac{x}{x+1}+3\right)=2\)
Đẳng thức xảy ra \(\Leftrightarrow x=1\)
Vậy nghiệm của pt là \(x=1\)
Giải các phương trình sau:
a)\(\sqrt[3]{9-x}+\sqrt[3]{7+x}=4\)
b)\(\sqrt{x-1}\cdot\sqrt[4]{x^2-4}=\sqrt{x-2}\cdot\sqrt[4]{x^2-1}\)
c)\(\sqrt[4]{9-x^2}+\sqrt{x^2-1}-2\sqrt{2}=\sqrt[6]{x-3}\)
a) Áp dụng bđt AM-GM có:
\(\sqrt[3]{\left(9-x\right).8.8}\le\dfrac{9-x+8+8}{3}=\dfrac{25-x}{3}\)\(\Leftrightarrow\sqrt[3]{9-x}\le\dfrac{25-x}{12}\)
\(\sqrt[3]{\left(7+x\right).8.8}\le\dfrac{7+x+8+8}{3}=\dfrac{23+x}{3}\)\(\Leftrightarrow\sqrt[3]{7+x}\le\dfrac{23+x}{12}\)
Cộng vế với vế \(\Rightarrow\sqrt[3]{9-x}+\sqrt[3]{7+x}\le4\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}9-x=8\\7+x=8\end{matrix}\right.\)\(\Rightarrow x=1\)
Vậy...
b)Đk:\(x\ge2\)
Pt \(\Leftrightarrow\left(x-1\right)^2.\left(x^2-4\right)=\left(x-2\right)^2.\left(x^2-1\right)\)
\(\Leftrightarrow\left(x-1\right)^2\left(x-2\right)\left(x+2\right)=\left(x-2\right)^2\left(x+1\right)\left(x-1\right)\)
Do \(x\ge2\Rightarrow x-1>0\)
Chia cả hai vế của pt cho x-1 ta được:
\(\left(x-1\right)\left(x-2\right)\left(x+2\right)=\left(x-2\right)^2\left(x+1\right)\)
\(\Leftrightarrow\left(x-2\right)\left[\left(x-1\right)\left(x+2\right)-\left(x-2\right)\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2+x-2-x^2+3x-2\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(4x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=1\left(ktm\right)\end{matrix}\right.\)
Vậy S={2}
c)Đk:\(\left\{{}\begin{matrix}9-x^2\ge0\\x^2-1\ge0\\x-3\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}-3\le x\le3\\\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\\x\ge3\end{matrix}\right.\)\(\Rightarrow x=3\)
Thay x=3 vào pt thấy thỏa mãn
Vậy S={3}
gải phương trình:
\(\sqrt{x}+\sqrt{x^2-1}=\sqrt{2x^2-3x-4}\)
giải phương trình vô tỉ
1,\(\sqrt{1-\sqrt{x}}+\sqrt{4+x}=3\)
2,\(\sqrt{x+1}+\sqrt[3]{7-x}=2\)
3,\(\sqrt{x}+\sqrt{x+1}=\sqrt{x-1}+\sqrt{x+4}\)
4,\(\left(x+3\right)\sqrt{10-x^2}=x^2-x-12\)
5,\(\sqrt[3]{x-1}+\sqrt[3]{x-2}=\sqrt[3]{2x-3}\)
4) Ta có: \(\left(x+3\right)\cdot\sqrt{10-x^2}=x^2-x-12\)
\(\Leftrightarrow\left(x+3\right)\cdot\sqrt{10-x^2}-\left(x-4\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(\sqrt{10-x^2}-x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\\sqrt{10-x^2}=x-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\10-x^2=x^2-8x+16\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x^2-8x+16-10+x^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\2x^2-8x+6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\2\left(x^2-4x+3\right)=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\\left(x-1\right)\left(x-3\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\\x=3\end{matrix}\right.\)
Gải phương trình sau
a)\(\sqrt{2x^2+4x+1}=1-x^2-2x\)
b)\(\sqrt{x+4}+\sqrt{x-4}=2x+2\sqrt{x^2-16}\)
c) (x+4)(x+1)-3\(\sqrt{x^2+x+2}=\sqrt{3x^2+3x}\)
a. ĐKXĐ: \(x\le\frac{-2-\sqrt{2}}{2};x\ge\frac{-2+\sqrt{2}}{2}\)
\(pt\Leftrightarrow2\sqrt{2x^2+4x+1}=2-2x^2-4x\)
\(\Leftrightarrow2x^2+4x+1+2\sqrt{2x^2+4x+1}+1=0\)
\(\Leftrightarrow\left(\sqrt{2x^2+4x+1}+1\right)^2=0\)
\(\Leftrightarrow\sqrt{2x^2+4x+1}+1=0\)
\(\Leftrightarrow\sqrt{2x^2+4x+1}=-1\)
\(\Rightarrow\text{pt vô nghiệm}\)
b. ĐKXĐ: \(x\le-4;x\ge4\)
Đặt \(\sqrt{x+4}+\sqrt{x-4}=t\left(t>0\right)\)
\(\Leftrightarrow t^2=2x+2\sqrt{x^2-16}\)
pt đã cho tương đương:
\(t=t^2\)
\(\Leftrightarrow t=1\) \(\left(\text{Vì }t>0\right)\)
\(\Leftrightarrow\sqrt{x+4}+\sqrt{x-4}=1\)
\(\Leftrightarrow2x+2\sqrt{x^2-16}=1\)
\(\Leftrightarrow2\sqrt{x^2-16}=1-2x\)
\(\Leftrightarrow\left\{{}\begin{matrix}4\left(x^2-16\right)=\left(1-2x\right)^2\\1-2x\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{65}{4}\\x\le\frac{1}{2}\end{matrix}\right.\Rightarrow\text{vô nghiệm}\)
Giải phương trình:
1. \(5x^2+2x+10=7\sqrt{x^4+4}\)
2. \(\dfrac{4}{x}+\sqrt{x-\dfrac{1}{x}}=x+\sqrt{2x-\dfrac{5}{x}}\)
3. \(\sqrt{x^2+2x}=\sqrt{3x^2+4x+1}-\sqrt{3x^2+4x+1}\)
Gải phương trình
a, \(\sqrt{\frac{1}{x+3}}+\sqrt{\frac{5}{x+4}}=\)4
b, \(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\)= \(2\sqrt{2}\)
Giải các phương trình sau:
1) \(\sqrt{3x^2+5x+8}-\sqrt{3x^2+5x+1}=1\)
2) \(x^2-2x-12+4\sqrt{\left(4-x\right)\left(2+x\right)}=0\)
3) \(3\sqrt{x}+\dfrac{3}{2\sqrt{x}}=2x+\dfrac{1}{2x}-7\)
4) \(\sqrt{x}-\dfrac{4}{\sqrt{x+2}}+\sqrt{x+2}=0\)
5)\(\left(x-7\right)\sqrt{\dfrac{x+3}{x-7}}=x+4\)
6) \(2\sqrt{x-4}+\sqrt{x-1}=\sqrt{2x-3}+\sqrt{4x-16}\)
7) \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\dfrac{x+3}{2}\)
Giúp mình với ajk, mink đang cần gấp