Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Huỳnh Lê Đăng Khoa
Xem chi tiết
Phan Thị Hồng Thắm
19 tháng 6 2017 lúc 17:46

a) Áp dụng định lí Pi - ta - go cho tam giác ABC vuông tại A có :

AB^2+AC^2 =BC^2hay AC^2=15^2-9^2=144 hay AC=12

b)Xét tam giác ABE và DBE có :

     Góc A=góc B(=90 độ)

     BA=BD(gt)

     Chung cạnh BE

suy ra tam giác ABE= BDE (c.g.c)

c) Từ tam giác ABE=BDE(cm ở ý b) suy ra góc ABE = góc DBE (2 góc tương ứng )

            Suy ra BE là tia phân giác cua góc ABC

Xét tam giác BDK và BAC có :

       Chung góc B

       BA=BD(gt)

       góc D = góc A (=90 độ)

suy ra tam giác BDK=tam giác BAC (g.c.g)

suy ra AC=DK (2 cạnh tương ứng ) 

                  ( Mình chỉ làm được ý a,b,c thôi , mình ngại vẽ hình . Nếu đúng kết bạn với mình nhé )

Phương Trâm
Xem chi tiết
công đạt
13 tháng 5 2019 lúc 11:16

a) Áp dụng định lí Pytago vào \(\Delta ABC\)ta có:

\(BC^2=AB^2+AC^2\)Hay \(BC=\sqrt{6^2+8^2=10}\)

Ủng hộmi nha

Mạnh Lê
13 tháng 5 2019 lúc 11:20

A B C D E

a) Xét \(\Delta ABC\)vuông tại A, AB = 6cm; AC = 8cm

\(\Rightarrow BC^2=AB^2+AC^2\)

     \(BC^2=6^2+8^2\)

     \(BC^2=36+64\)

    \(BC^2=100\)

    \(BC=10\)

Suy ra cạnh BC = 10cm

b) Xét \(\Delta BAC\)và \(\Delta BED\)ta có:

      \(\widehat{BAC}=\widehat{DEB}=90^o\)

         \(\widehat{B}\)chung

       \(BD=BC\left(gt\right)\)

\(\Rightarrow\Delta BAC=\Delta BED\)

Vậy...     

Huỳnh Lê Đăng Khoa
Xem chi tiết
Hàn Thái Tú
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 5 2023 lúc 10:01

a: Xét ΔBAE vuông tại A và ΔBDE vuông tại D co

BE chung

BA=BD

=>ΔBAE=ΔBDE

b: BA=BD

EA=ED

=>BE là trung trực của AD

c: Xét ΔBDM vuông tại D và ΔBAC vuông tại A có

BD=BA

góc B chung

=>ΔBDM=ΔBAC

=>BM=BC

=>ΔBMC cân tại B

『Kuroba ム Tsuki Ryoo...
16 tháng 5 2023 lúc 16:35

`a,`

Xét `2 \Delta` vuông `ABE` và `DBE`:

`\text {BE chung}`

`\text {BA = BD (2 cạnh tương ứng)}`

`=> \Delta ABE = \Delta DBE (ch-cgv)`

`b,`

Gọi I là giao điểm của AD và BE

Vì `\Delta ABE = \Delta DBE (a)`

`->` $\widehat {ABE} = \widehat {DBE} (\text {2 góc tương ứng})$

Xét `\Delta ABI` và `\Delta DBI`:

`\text {BA = BD (gt)}`

$\widehat {ABI} = \widehat {DBI}$

`\text {BI chung}`

`=> \Delta ABI = \Delta DBI (c-g-c)`

`->` $\widehat {BIA} = \widehat {BID} (\text {2 cạnh tương ứng})$

Mà `2` góc này ở vị trí kề bù

`->` $\widehat {BIA} + \widehat {BID} = 180^0$

`->` $\widehat {BIA} = \widehat {BID} =$\(\dfrac{180}{2}=90^0\)

`-> \text {BI} \bot \text {AD}` 

Mà `\text {I} \in \text {BE}`

`-> \text {BE} \bot \text{AD}`

`c,`

Vì `\Delta ABE = \Delta DBE (a)`

`-> \text {AE = DE (2 cạnh tương ứng)}`

Xét `\Delta AEM` và `\Delta DEC`:

`\text {AE = DE}`

$\widehat {AEM} = \widehat {DEC} (\text {2 góc đối đỉnh})$

$\widehat {MAE} = \widehat {CDE} (=90^0)$

`=> \Delta AEM = \Delta DEC (cgv-gn)`

`-> \text {AM = DC (2 cạnh tương ứng)}`

Ta có: \(\left\{{}\begin{matrix}\text{BM = AM + AB}\\\text{BC = BD + DC}\end{matrix}\right.\)

Mà \(\left\{{}\begin{matrix}\text{BA = BD}\\\text{AM = DC}\end{matrix}\right.\)

`-> \text {BM = BC}`

Xét `\Delta MBC`:

`\text {BM = BC}`

`-> \Delta MBC` cân tại B.

loading...

Hiệp sĩ ánh sáng ( Boy l...
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 8 2022 lúc 13:57

Bài 3: 

a: Xét ΔABM và ΔACN có

AB=AC
góc ABM=góc ACN

BM=CN

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

góc BAH=góc CAK

Do đó; ΔAHB=ΔAKC

Suy ra: AH=AK và BH=CK

c: Xét ΔHBM vuông tại H và ΔKCN vuông tại K có

MB=CN

góc M=góc N

Do đó ΔHBM=ΔKCN

Suy ra: góc HBM=góc KCN

=>góc OBC=góc OCB

hay ΔOBC can tại O

 

゚°☆Morgana ☆°゚ ( TCNTT )
Xem chi tiết
IS
22 tháng 2 2020 lúc 20:02

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
 => BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE. 
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
 =>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
 (Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của  ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE      => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực  Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/

(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
 => ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM          => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của  ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).

Khách vãng lai đã xóa
TommyInit
7 tháng 5 2021 lúc 18:25
dài dữ vậy
Khách vãng lai đã xóa
Phạm Hải Yến
7 tháng 5 2021 lúc 21:51
Vì AH vuông góc với BC Độ dài AH là 12 D€ABvaf E€Ac
Khách vãng lai đã xóa
Nguyễn Đắc Phú
Xem chi tiết
Nguyễn Đắc Phú
7 tháng 4 2020 lúc 11:38

Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)

Khách vãng lai đã xóa
Lê  Anh  Quân
8 tháng 4 2020 lúc 19:41

Do tam giác ABC có

AB = 3 , AC = 4 , BC = 5

Suy ra ta được

(3*3)+(4*4)=5*5  ( định lý pi ta go) 

9 + 16 = 25

Theo định lý py ta go thì tam giác abc vuông tại A

Khách vãng lai đã xóa
Tran Le Khanh Linh
15 tháng 4 2020 lúc 7:19

a) Áp dụng định lý Pytago vào \(\Delta\)ABC có
AB2+AC2=BC2

thay AB=3cm, AC=4cm va BC=5cm, ta có:

32+42=52

=> 9+16=25 (luôn đúng)

=> đpcm

b) có D nằm trên tia đối của tia AC

=> D,A,C thằng hàng và A nằm giữa D và C

=> DA+AC=DC

=> DA+4=6

=>DA=2(cm)

áp dụng định lý Pytago vào tam giác ABD vuông tại A có:

AB2+AD2=BD2

=> 32+22=BD2

=> 9+4=BD2

=> \(BD=\sqrt{13}\)(cm)

Khách vãng lai đã xóa
Hanna Giver
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 4 2023 lúc 9:27

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng

Lâm Đặng
28 tháng 4 2023 lúc 15:09

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng

Trần Thị Thùy Ly
Xem chi tiết
123ab4567h89
5 tháng 10 2017 lúc 15:50

BÀI 1 cho tam giác ABC vuông tại A.Kẻ BD là phân giác của góc B.Kẻ AI vuông góc BD tại I.AI cắt BC tại E

a) chứng minh AB=EB

b) chứng minh tam giác BED vuông

c) DE cắt AB tại F, chứng minh AE//FC

BÀI 2 cho tam giác ABC cân tại A, có BD và CE là hai đường trung tuyến cắt nhau tại I

a) chứng minh tam giác IBC cân

b)lấy O thuộc tia IC sao cho IO=IE.Gọi K là trung điểm của IA.Chứng minh AO, BD, CK đồng quy

BÀI 3 cho tam giác ABC cân tại A, kẻ tia phân giác của góc BAC cắt BC tại H.Biết AB=15cm, BC=18cm

a)so sánh góc A và góc C

b)chứng minh rằng tam giác ABH = tam giác ACH

c)vẽ trung tuyến BD của tam giác ABC cắt AH tại G.Chứng minh rằng: tam giác AEG = tam giác ADG

d)tính độ dài AG

e) kẻ đường thẳng CG cắt AB ở E, chứng minh rằng: tam giác AEG = tam giác ADG

BÀI 4 cho tam giác ABC vuông tại A, trên BC lấy điểm D sao cho BA=BD.Qua D kẻ đường vuông góc với BC cắt AC tại E, qua C kẻ đường vuông góc với BE tại H cắt AB tại F

a)chứng minh tam giác ABE = tam giác DBE

b) chứng minh tam giác BCF cân

c) chứng minh 3 điểm F.D,E thẳng hàng

d)trên cạnh CB lấy điểm M sao cho CA=CM.Tính số đo góc DAM

BÀI 5 cho tam giác ABC cân tại A, kẻ BD vuông góc AC, kẻ CE vuông góc AB, BD và CE cắt nhau tại I

a)chứng minh rằng tam giác BDC = tam giác CEB

b)so sánh góc IBE và góc ICD

c) đường thẳng AI cắt BC tại H, chứng minh AI vuông góc BC tại H

BÀI 6 cho tam giác ABC vuông tại A, biết AB=6cm, AC=8cm

a)tính BC

b)trung trực của BC cắt AC tại D và cắt AB tại F, chứng minh góc DBC=DCB

c) trên tia đối của tia DB lấy E sao cho DE=DC, chứng minh tam giác BCE vuông và DF là phân giác góc ADE

d) chứng minh BE vuông góc FC

IS
22 tháng 2 2020 lúc 20:02

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
 => BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE. 
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
 =>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
 (Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của  ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE      => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực  Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/

(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
 => ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM          => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của  ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).

Khách vãng lai đã xóa
Nguyễn Hà Phương
Xem chi tiết