Lập phương trình bậc hai có hai nghiệm là \(x_1=3+2\sqrt{3}\)và \(x_2=3-2\sqrt{3}\)
Cho phương trình bậc hai: x2-2(m-1)x+2m-3=0 với m là tham số. Tìm m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn \(\sqrt{x_1}\)=2\(\sqrt{x_2}\)
Ptr có: `a+b+c=1-2m+2+2m-3=0`
`=>[(x=1),(x=c/a=2m-3):}`
`@TH1: x_1=1;x_2=2m-3`
`=>\sqrt{1}=2\sqrt{2m-3}`
`<=>\sqrt{2m-3}=1/2`
`<=>2m-3=1/4`
`<=>m=13/8`
`@TH2:x_1=2m-3;x_2=1`
`=>\sqrt{2m-3}=2\sqrt{1}`
`<=>2m-3=4`
`<=>m=7/2`
Nhận thấy rằng phương trình tích \(\left(x+2\right)\left(x-3\right)=0\) hay phương trình bậc hai \(x^2-x-6=0\) có hai nghiệm là \(x_1=-2,x_2=3\). Tương tự, hãy lập những phương trình bậc hai mà nghiệm của mỗi phương trình là một trong những cặp số sau :
a) \(x_1=2,x_2=5\)
b) \(x_1=-\dfrac{1}{2},x_2=3\)
c) \(x_1=0,1,x_2=0,2\)
d) \(x_1=1-\sqrt{2},x_2=1+\sqrt{2}\)
Cho phương trình `x^2- 4x + 3 = 0 ` có hai nghiệm phân biệt `x_1,x_2 `. Không giải phương trình, hãy tính giá trị của biểu thức : `\sqrt{x_1}+``\sqrt{x_2}`
\(x^2-4x+3=0\)
Theo vi-et, ta có: \(x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-4\right)}{1}=4;x_1x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)
Đặt \(A=\sqrt{x_1}+\sqrt{x_2}\)
=>\(A^2=x_1+x_2+2\sqrt{x_1x_2}\)
=>\(A^2=4+2\cdot\sqrt{3}\)
=>\(A=\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
giả sử x1;x2 là hai nghiệm của phương trình bậc hai: x2 - 3\(\sqrt{2}\)x - \(\sqrt{2}\)=0
tính giá trị biểu thức \(A=\frac{2}{3\sqrt{2}x_1+x_2^2-3\sqrt{2}}+\frac{3\sqrt{2}.x_2+x_1^2-3\sqrt{2}}{2}\)
x1;x2 là nghiệm của pt
=> \(x^2_1-3\sqrt{2}x_1-\sqrt{2}=0\Rightarrow x^2_1=3\sqrt{2}x_1+\sqrt{2}\)
\(x^2_2-3\sqrt{2}x_2-\sqrt{2}=0\Rightarrow x^2_2=3\sqrt{2}x_2+\sqrt{2}\)
=> \(A=\frac{2}{3\sqrt{2}x_1+3\sqrt{2}x_2+\sqrt{2}-3\sqrt{2}}+\frac{3\sqrt{2}x_2+3\sqrt{2}x_1+\sqrt{2}-3\sqrt{2}}{2}\)
\(A=\frac{2}{3\sqrt{2}\left(x_1+x_2\right)-2\sqrt{2}}+\frac{3\sqrt{2}\left(x_2+x_1\right)-2\sqrt{2}}{2}\)
Theo VI ét => \(x_1+x_2=3\sqrt{2}\). Thay vào A
=> quy đồng.....
Cho phương trình \(x^2\)+px+q=0
a. Giai pt khi p = -(3+\(\sqrt{2}\)) ; q = 3\(\sqrt{2}\)
b. Lập phương trình bậc hai có 2 nghiệm là : \(\frac{x_1}{x_2}\) ; \(\frac{x_2}{x_1}\)
Cho phương trình \(x^2-\left(n-2\right)x-3\) ( n là tham số). Chứng minh phương trình luôn có hai nghiệm \(x_1;x_2\) với mọi n. Tìm n để các nghiệm thoả mãn hệ thức:
\(\sqrt{x^2_1+2018}-x_1=\sqrt{x^2_2+2018}+x_2\)
\(\Delta=\left(n-2\right)^2+12>0\) ; \(\forall n\Rightarrow\) pt đã cho luôn có 2 nghiệm pb trái dấu với mọi n
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=n-2\\x_1x_2=-3\end{matrix}\right.\)
\(\sqrt{x_1^2+2018}-x_2=\sqrt{x_2^2+2018}+x_1\)
\(\Rightarrow x_1^2+x_2^2-2x_2\sqrt{x_1^2+2018}=x_1^2+x_2^2+2018+2x_1\sqrt{x_2^2+2018}\)
\(\Rightarrow-x_2\sqrt{x_1^2+2018}=x_1\sqrt{x_2^2+2018}\)
\(\Rightarrow x_2^2\left(x_1^2+2018\right)=x_1^2\left(x_2^2+2018\right)\)
\(\Rightarrow x_1^2=x_2^2\Rightarrow x_1=-x_2\) (do \(x_1;x_2\) trái dấu)
\(\Rightarrow x_1+x_2=0\Rightarrow n-2=0\Rightarrow n=2\)
Thử lại với \(n=2\) thấy đúng. Vậy...
\(\text{Cho phương trình: x^2-2(m+1)x+3m-3=0 ( x là ẩn, m là tham số)}\)
\(\text{Tìm m để phương trình có hai nghiệm x_1,x_2 phân biệt sao cho}\)
\(\sqrt{x_1-1}+\sqrt{x_2-1}=4\)
Giải hộ mình với ạ
\(x^2-2\left(m+1\right)x+3m-3=0\left(1\right)\)
\(\Delta'>0\Leftrightarrow\left(m+1\right)^2-\left(3m-3\right)=m^2-m+4>0\left(đúng\forall m\right)\)
\(đk\) \(tồn\) \(tại:\sqrt{x1-1}+\sqrt{x2-1}\)
\(\Leftrightarrow1\le x1< x2\Leftrightarrow\left\{{}\begin{matrix}\left(x1-1\right)\left(x2-1\right)\ge0\\x1+x2-2>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x1x2-\left(x1+x2\right)+1\ge0\\2\left(m+1\right)-2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3m-2-2\left(m+1\right)+1\ge0\\m>0\end{matrix}\right.\)
\(\Leftrightarrow m\ge4\)
\(\Rightarrow\sqrt{x1-1}+\sqrt{x2-1}=4\Leftrightarrow x1+x2-2+2\sqrt{\left(x1-1\right)\left(x2-1\right)}=16\)
\(\Leftrightarrow2\left(m+1\right)+2\sqrt{x1.x2-\left(x1+x2\right)+1}=18\)
\(\Leftrightarrow\left(m+1\right)+\sqrt{3m-3-2\left(m+1\right)+1}=9\)
\(\Leftrightarrow m-4+\sqrt{m-4}=4\)
\(đặt:\sqrt{m-4}=t\ge0\Rightarrow t^2+t=4\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{-1+\sqrt{17}}{21}\left(tm\right)\\t=\dfrac{-1-\sqrt{17}}{21}\left(ktm\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{m-4}=\dfrac{-1+\sqrt{17}}{21}\Leftrightarrow m=....\)
\(\)
Cho phương trình \(x^2\)+px+q=0.
a. Giải phương trình khi p= -(3+\(\sqrt{2}\)) ; q=\(3\sqrt{2}\)
b Lập phương trình bậc hai có 2 nghiệm \(\frac{x_1}{x_2}\); \(\frac{x_2}{x_1}\) (Làm hộ mình câu này nha m.n)
Delta .........
Viet........
\(t_1=\frac{x_1}{x_2};\text{ }t_2=\frac{x_2}{x_1}\)
\(t_1+t_2=\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{x_1^2+x_2^2}{x_1x_2}=\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=\frac{\left(-p\right)^2-2q}{q}\)
\(t_1.t_2=1\)
Do đó t1; t2 là 2 nghiệm của pt \(t^2-\frac{p^2-2q}{q}t+1=0\)
Cho phương trình x2 - (m + 1)x + m + 4 = 0, m là tham số. Tìm m để phương trình có hai nghiệm phân biệt x1 , x2, thỏa mãn \(\sqrt{x_1}+\sqrt{x_2}=2\sqrt{3}\)
\(x^2-\left(m+1\right)x+m+4=0\left(1\right)\)
\(\Rightarrow\Delta>0\Leftrightarrow\left(m+1\right)^2-4\left(m+4\right)>0\Leftrightarrow\left[{}\begin{matrix}m< -3\\m>5\end{matrix}\right.\)\(\left(2\right)\)
\(ddkt-thỏa:\sqrt{x1}+\sqrt{x2}=2\sqrt{3}\)
\(x1=0\Rightarrow\left(1\right)\Leftrightarrow m=-4\Rightarrow\left(1\right)\Leftrightarrow x^2+3x=0\Leftrightarrow\left[{}\begin{matrix}x1=0\\x2=-3< 0\left(loại\right)\end{matrix}\right.\)
\(x1\ne0\) \(\Rightarrow0< x1< x2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x1+x2>0\\x1x2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m+1>0\\m+4>0\end{matrix}\right.\)\(\Rightarrow m>-1\)\(\left(3\right)\)
\(\left(2\right)\left(3\right)\Rightarrow m>5\)
\(\Rightarrow\sqrt{x1}+\sqrt{x2}=2\sqrt{3}\)
\(\Leftrightarrow x1+x2+2\sqrt{x1x2}=12\Leftrightarrow m+1+2\sqrt{m+4}=12\)
\(\Leftrightarrow m+4+2\sqrt{m+4}-15=0\)
\(đặt:\sqrt{m+4}=t>5\Rightarrow t^2+2t-15=0\Leftrightarrow\left[{}\begin{matrix}t=-5\left(ktm\right)\\t=3\left(ktm\right)\end{matrix}\right.\)
\(\Rightarrow m\in\phi\)
Để pt có 2 nghiệm pb
\(\left(m+1\right)^2-4\left(m+4\right)=m^2+2m+1-4m-16\)
\(=m^2-2m-15>0\)
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=m+1\\x_1x_2=m+4\end{matrix}\right.\)
Ta có : \(\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=12\Leftrightarrow x_1+2\sqrt{x_1x_2}+x_2=12\)
Thay vào ta được \(m+1+2\sqrt{m+4}=12\Leftrightarrow2\sqrt{m+4}=11-m\)đk : m >= -4
\(\Leftrightarrow4\left(m+4\right)=121-22m+m^2\Leftrightarrow m^2-26m+105=0\)
\(\Leftrightarrow m=21\left(ktm\right);m=5\left(ktm\right)\)