\(x_1+x_2=3+2\sqrt{3}+3-2\sqrt{3}=6\)
\(x_1.x_2=3^2-\left(2\sqrt{3}\right)^2=-3\)
=> Phương trình bậc 2 có dạng: x^2 - 6x - 3 = 0
\(x_1+x_2=3+2\sqrt{3}+3-2\sqrt{3}=6\)
\(x_1.x_2=3^2-\left(2\sqrt{3}\right)^2=-3\)
=> Phương trình bậc 2 có dạng: x^2 - 6x - 3 = 0
Cho phương trình bậc hai: x2-2(m-1)x+2m-3=0 với m là tham số. Tìm m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn \(\sqrt{x_1}\)=2\(\sqrt{x_2}\)
Cho phương trình `x^2- 4x + 3 = 0 ` có hai nghiệm phân biệt `x_1,x_2 `. Không giải phương trình, hãy tính giá trị của biểu thức : `\sqrt{x_1}+``\sqrt{x_2}`
giả sử x1;x2 là hai nghiệm của phương trình bậc hai: x2 - 3\(\sqrt{2}\)x - \(\sqrt{2}\)=0
tính giá trị biểu thức \(A=\frac{2}{3\sqrt{2}x_1+x_2^2-3\sqrt{2}}+\frac{3\sqrt{2}.x_2+x_1^2-3\sqrt{2}}{2}\)
Cho phương trình \(x^2\)+px+q=0
a. Giai pt khi p = -(3+\(\sqrt{2}\)) ; q = 3\(\sqrt{2}\)
b. Lập phương trình bậc hai có 2 nghiệm là : \(\frac{x_1}{x_2}\) ; \(\frac{x_2}{x_1}\)
Cho phương trình \(x^2\)+px+q=0.
a. Giải phương trình khi p= -(3+\(\sqrt{2}\)) ; q=\(3\sqrt{2}\)
b Lập phương trình bậc hai có 2 nghiệm \(\frac{x_1}{x_2}\); \(\frac{x_2}{x_1}\) (Làm hộ mình câu này nha m.n)
Cho phương trình x2 - (m + 1)x + m + 4 = 0, m là tham số. Tìm m để phương trình có hai nghiệm phân biệt x1 , x2, thỏa mãn \(\sqrt{x_1}+\sqrt{x_2}=2\sqrt{3}\)
Cho phương trình `x^2 -2 mx + m - 1 = 0 `( m là tham số).
Gọi `x_1,x_2`, là hai nghiệm của phương trình đã cho. Với m $\neq$ 1, lập phương trình bậc hai nhận `1/x_1` và `1/x_2` làm nghiệm
Cho phương trình ẩn x : \(^{x^2-5x+m-2=0\left(1\right)}\)
a.Giải phương trình (1) khi m=-4
b.Tìm m để phương trình (1) có hai nghiệm dương phân biệt \(_{x_1,_{ }x_2}\)thỏa mãn hệ thức \(2\left(\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}\right)=3\)
lập phương trình bậc hai có 2 nghiệm là 2+\(\sqrt{3}\)và 2-\(\sqrt{3}\)