(3+x)/(7+y)=3/7; x+ y= 20; tìm x,y thuộc Z
cho x= \(7+4\sqrt{3}\), y= \(7-4\sqrt{3}\)
tính \(x^2+y^2\), \(x^3+y^3\), \(x^7+y^7\)
lm nhanh giúp mk nhé
Có \(x+y=7+4\sqrt{3}+7-4\sqrt{3}=14\)
\(xy=\left(7-4\sqrt{3}\right)\left(7+4\sqrt{3}\right)=1\)
\(x^2+y^2=\left(x+y\right)^2-2xy=14^2-2=194\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=14^3-3.1.14=2702\)
\(x^7+y^7=\left(x^3+y^3\right)\left(x^4+y^4\right)-x^3y^3\left(x+y\right)\)\(=2702\left[\left(x^2+y^2\right)^2-2x^2y^2\right]-14\)
\(=2702\left(194^2-2\right)-14=101687054\)
Vậy...
cho x=\(7+4\sqrt{3}\), y=\(7-4\sqrt{3}\)
tính \(x^2+y^2\), \(x^3+y^3\), \(x^7+y^7\)
lm nhanh giúp mk nhé! thanks
\(x+y=14\) ; \(xy=\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)=1\)
\(x^2+y^2=\left(x+y\right)^2-2xy=14^2-2.1=194\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=14^3-3.1.14=2702\)
\(x^4+y^4=\left(x^2+y^2\right)^2-2\left(xy\right)^2=194^2-2.1^2=37634\)
\(x^7+y^7=\left(x^3+y^3\right)\left(x^4+y^4\right)-\left(xy\right)^3\left(x+y\right)=2702.37634-1^3.14=...\)
( 2 x y + 2/15 ) x 3 = 4/5
7/9 x ( 2 - 1/3 x y ) = 14/15
4/21 + 5 x y - 8/7 = 1/3
7/12 x y - 3/12 x y = 5
6/7 x y + 14/36 + 1/7 x y = 7/18
Giúp em với ạ
( 2 x y + 2/15 ) x 3 = 4/5
( 2 x y + 2/15 ) = 4/5 : 3
( 2 x y + 2/15 ) = 4/15
2 x y = 4/15 - 2/15
2 x y = 2/15
y = 2/15 :2
y = 1/15
(2 x y + 2/15) x 3 = 4/5
2 x y + 2/15) = 4/5 : 3
2 x y + 2/15 = 4/15
2 x y = 4/15 - 2/15
2 x y = 2/15
y = 2/15 : 2
y = 1/15
7/9 x (2 - 1/3 x y) = 14/15
(2 - 1/3 x y) = 14/15 : 7/9
(2 - 1/3 x y) = 6/5
2 - y = 6/5 x 1/3
2 - y = 2/5
y = 2/5 + 2
y = 12/5
4/21 + 5 x y - 8/7 = 1/3
4/21 + 5 x y = 1/3 + 8/7
4/21 + 5 x y = 31/21
5 x y = 31/21 - 4/21
5 x y = 9/7
y = 9/7 : 5
y = 9/35
7/12 x y - 3/12 x y = 5
y x (7/12 - 3/12) = 5
y x 1/3 = 5
y = 5 : 1/3
y = 15
Đạo hàm của hàm số \(y=\left(-x^2+3x+7\right)^7\) là:
A. \(y'=7\left(-2x+3\right)\left(-x^2+3x+7\right)^6\)
B. \(y'=7\left(-x^2+3x+7\right)^6\)
C. \(y'=\left(-2x+3\right)\left(-x^2+3x+7\right)^6\)
D. \(y'=7\left(-2x+3\right)\left(-x^2+3x+7\right)^6\)
\(y'=7\left(-x^2+3x+7\right)^6.\left(-x^2+3x+7\right)'\)
\(=7\left(-2x+3\right)\left(-x^2+3x+7\right)^6\)
Bài 1 : Tìm x,y thuộc Z :
1,( x + 1 ) . ( y - 2 ) = 0
2,( x - 5 ) . ( y - 7 ) = 1
3,( x + 4 ) . ( y - 2 ) = 2
4,( x - 4 ) . ( y + 3 ) = -3
5,( x + 3 ) . ( y - 6 ) = -4
6,( x - 8 ) . ( y + 7 ) = 5
7,( x + 7 ) . ( y - 3 ) = -6
8,( x - 6 ) . ( y + 2 ) = 7
1)\(\left(x+1\right).\left(y-2\right)=0\) \(\left(x,y\inℤ\right)\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\y-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\y=2\end{cases}}\)
2)\(\left(x-5\right).\left(y-7\right)=1\)
x-5 | 1 | -1 |
y-7 | 1 | -1 |
x | 6 | 4 |
y | 8 | 6 |
3)\(\left(x+4\right).\left(y-2\right)=2\)
x+4 | 1 | 2 | -1 | -2 |
y-2 | 2 | 1 | -2 | -1 |
x | -3 | -2 | -5 | -6 |
y | 4 | 3 | 0 | 1 |
4)\(\left(x-4\right).\left(y+3\right)=-3\)
x-4 | 1 | -1 | 3 | -3 |
y+3 | -3 | 3 | -1 | 1 |
x | 5 | 3 | 7 | 1 |
y | -6 | 0 | -4 | -2 |
5)\(\left(x+3\right).\left(y-6\right)=-4\)
x+3 | -1 | 1 | -4 | 4 | 2 | -2 |
y-6 | 4 | -4 | 1 | -1 | -2 | 2 |
x | -4 | -2 | -7 | 1 | -1 | -5 |
y | 10 | 2 | 7 | 5 | 4 | 8 |
6)\(\left(x-8\right).\left(y+7\right)=5\)
x-8 | 1 | 5 | -1 | -5 |
y+7 | 5 | 1 | -5 | -1 |
x | 9 | 13 | 7 | 3 |
y | -2 | -6 | -12 | -8 |
7)\(\left(x+7\right).\left(y-3\right)=-6\)
x+7 | -1 | 1 | -6 | 6 | -2 | 2 | -3 | 3 |
y-3 | 6 | -6 | 1 | -1 | 3 | -3 | 2 | -2 |
x | -8 | -6 | -13 | -1 | -9 | -5 | -10 | -4 |
y | 9 | -3 | 4 | 2 | 6 | 0 | 5 | 1 |
8)\(\left(x-6\right).\left(y+2\right)=7\)
x-6 | 1 | 7 | -1 | -7 |
y+2 | 7 | 1 | -7 | -1 |
x | 7 | 13 | 5 | -1 |
y | 5 | -1 | -9 | -3 |
ok :)
Tìm số nguyên x và y biết
( 3 - x ) . (7 - y ) = 5
(4 - x ) . ( y + 3 ) = - 3
( 5 - x ) . ( y - 7 ) = - 7
3-x và 7-y € Ư(5)
Mà Ư(5)= {1;5;-1;-5}
Ta có bảng sau:
3-x | 1 | 5 | -1 | -5 |
7-y | 5 | 1 | -5 | -1 |
x | 2 | -2 | 4 | 8 |
y | 2 | 6 | 12 | 8 |
4-x và y+3 € Ư(-3)
Mà Ư(-3)={1;3;-1;-3}
Ta có bảng sau:
4-x | 1 | -3 | -1 | 3 |
Y+3 | -3 | 1 | 3 | -1 |
x | 3 | 7 | 5 | 1 |
y | -6 | -2 | 0 | -4 |
=> 5-x và y-7 € Ư(-7)
Mà Ư(-7)={1;7;-1;-7}
Ta có bảng sau:
5-x | -1 | 7 | -7 | 1 |
y-7 | 7 | -1 | 1 | -7 |
x | 6 | -2 | 12 | 4 |
y | 14 | 6 | 8 | 0 |
3*x^2 -7*x*y -3*x+7*y
\(=x\left(3x-7y\right)-\left(3x-7y\right)=\left(x-1\right)\left(3x-7y\right)\)
1.Cho x+y+z=0. CMR:
a) \(5\left(x^3+y^3+z^3\right)\left(x^2+y^2+z^2\right)=6\left(x^5+y^5+z^5\right)\)
b) \(x^7+y^7+z^7=7xyz\left(x^2y^2+y^2z^2+z^2x^2\right)\)
c) \(10\left(x^7+y^7+z^7\right)=7\left(x^2+y^2+z^2\right)\left(x^5+y^5+z^5\right)\)
d) \(2\left(x^5+y^5+z^5\right)=5xyz\left(x^2+y^2+z^2\right)\)
2. Tìm n∈ N để biểu thức sau là số nguyên tố
a) \(A=n^3-4n^2-4n-1\)
b) \(B=n^3-6n^2+9n-2\)
c) \(C=n^{1975}+n^{1973}+1\)
Vì bài dài nên mình sẽ tách ra nhé.
1a. Ta có:
$x^2+y^2+z^2=(x+y+z)^2-2(xy+yz+xz)=-2(xy+yz+xz)$
$x^3+y^3+z^3=(x+y+z)^3-3(x+y)(y+z)(x+z)=-3(x+y)(y+z)(x+z)$
$=-3(-z)(-x)(-y)=3xyz$
$\Rightarrow \text{VT}=-30xyz(xy+yz+xz)(1)$
------------------------
$x^5+y^5=(x^2+y^2)(x^3+y^3)-x^2y^2(x+y)$
$=[(x+y)^2-2xy][(x+y)^3-3xy(x+y)]-x^2y^2(x+y)$
$=(z^2-2xy)(-z^3+3xyz)+x^2y^2z$
$=-z^5+3xyz^3+2xyz^3-6x^2y^2z+x^2y^2z$
$=-z^5+5xyz^3-5x^2y^2z$
$\Rightarrow 6(x^5+y^5+z^5)=6(5xyz^3-5x^2y^2z)$
$=30xyz(z^2-xy)=30xyz[z(-x-y)-xy]=-30xyz(xy+yz+xz)(2)$
Từ $(1);(2)$ ta có đpcm.
1b.
$x^4+y^4=(x^2+y^2)^2-2x^2y^2=[(x+y)^2-2xy]^2-2x^2y^2$
$=(z^2-2xy)^2-2x^2y^2=z^4+2x^2y^2-4xyz^2$
$x^3+y^3=(x+y)^3-3xy(x+y)=-z^3+3xyz$
Do đó:
$x^7+y^7=(x^4+y^4)(x^3+y^3)-x^3y^3(x+y)$
$=(z^4+2x^2y^2-4xyz^2)(-z^3+3xyz)+x^3y^3z$
$=7x^3y^3z-14x^2y^2z^3+7xyz^5-z^7$
$\Rightarrow \text{VT}=7x^3y^3z-14x^2y^2z^3+7xyz^5$
$=7xyz(x^2y^2-2xyz^2+z^4)$
$=7xyz(xy-z^2)$
$=7xyz[xy+z(x+y)]^2=7xyz(xy+yz+xz)^2$
$=7xyz[x^2y^2+y^2z^2+z^2x^2+2xyz(x+y+z)]$
$=7xyz(x^2y^2+y^2z^2+z^2x^2)$ (đpcm)
1c. Sử dụng kq phần a,b:
\(10(x^7+y^7+z^7)=70xyz(xy+yz+xz)^2\)
\(=-35xyz(xy+yz+xz).-2(xy+yz+xz)=-35xyz(x+y+z)(x^2+y^2+z^2)\)
\(=\frac{7}{6}.-30xyz(xy+yz+xz)(x^2+y^2+z^2)=\frac{7}{6}.6(x^5+y^5+z^5).(x^2+y^2+z^2)\)
\(=7(x^5+y^5+z^5)(x^2+y^2+z^5)\)
(đpcm)
1d. Áp dụng kq phần a
$6(x^5+y^5+z^5)=-30xyz(xy+y+xz)=15xyz.-2(xy+yz+xz)=15xyz(x^2+y^2+z^2)$
$\Rightarrow 2(x^5+y^5+z^5)=5xyz(x^2+y^2+z^2)$ (đpcm)
Tìm m để PT có nghiệm duy nhất \(\hept{\begin{cases}x^3+y^3=m\\x^7+y^7=x^4+y^4\end{cases}}\)\(\left\{{}\begin{matrix}x^3+y^3=m\\x^7+y^7=x^4+y^4\end{matrix}\right.\)
Tìm các số x, y biết rằng: a) x y = 5 7 và x + y = 4,08 b) x y = −3 7 và x – y = –40 c) x y = 3 7 và x.y =