Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hoho209
Xem chi tiết
Hồng Nhan
31 tháng 3 2021 lúc 22:33

mk thấy cm \(\dfrac{a^2+b^2}{2}\ge ab\)   thì đúng hơn

肖战Daytoy_1005
2 tháng 4 2021 lúc 23:02

Sửa đề: \(\dfrac{a^2+b^2}{2}\ge ab\)

Ta có: \(\left(a-b\right)^2\ge0\) với mọi a, b

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow\dfrac{a^2+b^2}{2}\ge ab\)

Dấu "=" xảy ra khi a=b

 

Haruki09
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 5 2022 lúc 22:01

a: Xét ΔABD và ΔACE có

AB=AC

\(\widehat{BAD}\) chung

AD=AE

Do đó: ΔABD=ΔACE

b: Ta có: ΔABD=ΔACE

nên AD=AE

hay ΔADE cân tại A

Minh
14 tháng 5 2022 lúc 22:02

refer

 

a: Xét ΔABD và ΔACE có

AB=AC

ˆBADBAD^ chung

AD=AE

Do đó: ΔABD=ΔACE

b: Ta có: ΔABD=ΔACE

nên AD=AE

hay ΔADE cân tại A

Ngo Tuyen
Xem chi tiết
ILoveMath
12 tháng 1 2022 lúc 21:11

đề sai r bạn

Gô đầu moi
12 tháng 1 2022 lúc 21:12

chuẩn cm nó luôn

Nguyễn Phạm Ngọc Linhhh
Xem chi tiết
PINK HELLO KITTY
Xem chi tiết
Hoàng Vũ Minh
Xem chi tiết
Ngọc Nguyễn
23 tháng 3 2019 lúc 16:18

10x2 - 5x + 1 \(\ge\)x2 + x

Ta có : 10x2 - 5x + 1 - x2 - x\(\ge0\)

           9x2 - 6x + 1\(\ge0\)

            ( 3x - 1 )2   \(\ge0\) ( luôn đúng )

 \(\Rightarrow\)10x2 - 5x + 1 \(\ge\) x2 + x

b)   a2 + b2 + c2 \(\ge\)ab + ac + bc

Nhân cả 2 vế với 2 ta được :

  2a2 + 2b2 + 2c2 \(\ge\) 2ab + 2ac + 2bc

Ta có : 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc  \(\ge0\)

         ( a2 - 2ab + b2 ) + ( a2 - 2ac + c2) + ( b2 - 2bc + c2 )  \(\ge0\)

         ( a - b ) 2  +  ( a - c )2  +  ( b - c )2   \(\ge0\)  ( luôn đúng )

\(\Rightarrow\) a2 + b2 + c2 \(\ge\) ab + ac + bc

Xem chi tiết
Lấp La Lấp Lánh
12 tháng 9 2021 lúc 18:11

\(B=2+2^2+2^3+2^4+...+2^{99}+2^{100}=2\left(1+2^2+2^3+2^4\right)+...+2^{96}\left(1+2^2+2^3+2^4\right)=2.31+2^6.31+...+2^{96}.31=31\left(2+2^6+...+2^{96}\right)⋮31\)

LÊ NGUYỄN PHƯƠNG THẢO
12 tháng 9 2021 lúc 19:19

B=2+22+23+24+...+299+2100=2(1+22+23+24)+...+296(1+22+23+24)=2.31+26.31+...+296.31=31(2+26+...+296)⋮31

mai phuong
Xem chi tiết
Dũng Senpai
Xem chi tiết
Nguyễn Linh Chi
20 tháng 8 2019 lúc 21:03

Đặt: f(a;b;c) =\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)

Vai trò của a, b, c là như nhau có thể giả sử: \(a=max\left\{a,b,c\right\}\)

Ta có: \(f\left(a;b;\sqrt{ab}\right)=\frac{a}{a+b}+\frac{b}{b+\sqrt{ab}}+\frac{\sqrt{ab}}{\sqrt{ab}+a}\)

\(=\frac{a}{a+b}+\frac{\sqrt{b}}{\sqrt{b}+\sqrt{a}}+\frac{\sqrt{b}}{\sqrt{b}+\sqrt{a}}=\frac{a}{a+b}+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)

Ta chứng minh:

\(f\left(a;b;c\right)\ge f\left(a;b;\sqrt{ab}\right)\ge\frac{7}{5}\)

+) Chứng minh: \(f\left(a;b;c\right)\ge f\left(a;b;\sqrt{ab}\right)\)

Xét : \(f\left(a;b;c\right)-f\left(a;b;\sqrt{ab}\right)=\frac{b}{b+c}+\frac{c}{a+c}-\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)

\(=\frac{b\left(a+c\right)\left(\sqrt{a}+\sqrt{b}\right)+c\left(b+c\right)\left(\sqrt{a}+\sqrt{b}\right)-2\sqrt{b}\left(b+c\right)\left(a+c\right)}{\left(b+c\right)\left(a+c\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\frac{ab\sqrt{a}-ab\sqrt{b}+2bc\sqrt{a}-2ac\sqrt{b}+c^2\sqrt{a}-c^2\sqrt{b}}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\)

\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{ab}-c\right)^2}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\ge0\)vì a=max{a,b,c} => \(a\ge b\)

=> \(f\left(a;b;c\right)\ge f\left(a;b;\sqrt{ab}\right)\)(1)

+) Chứng minh:\(f\left(a;b;\sqrt{ab}\right)\ge\frac{7}{5}\)

Xét: \(f\left(a;b;\sqrt{ab}\right)-\frac{7}{5}=\frac{a}{a+b}+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\frac{7}{5}\)\(=\frac{\frac{a}{b}}{\frac{a}{b}+1}+\frac{2}{\sqrt{\frac{a}{b}}+1}-\frac{7}{5}\)(2)

Đặt \(\sqrt{\frac{a}{b}}=x\left(đk:x\le3\right)\)Ta có: 

(2)=\(\frac{x^2}{x^2+1}+\frac{2}{x+1}-\frac{7}{5}\)\(=\frac{5x^3+5x^2+10x^2+10-7x^3-7x^2-7x-7}{5\left(x^2+1\right)\left(x+1\right)}\)

\(=\frac{-2x^3+8x^2-7x+3}{5\left(x^2+1\right)\left(x+1\right)}=\frac{\left(3-x\right)\left(2x^2-2x+1\right)}{5\left(x^2+1\right)\left(x+1\right)}\ge0\)

=> \(f\left(a;b;\sqrt{ab}\right)\ge\frac{7}{5}\)(3)

Từ (1); (3) => \(f\left(a;b;c\right)\ge f\left(a;b;\sqrt{ab}\right)\ge\frac{7}{5}\)

"=" xảy ra <=> a=3; b=1/3; c=1 và các hoán vị