Cho x,y,z là các số dương
Thỏa mãn x√1-y^2 + y√1-z^2 + z√1-x^2
Tính x^2 + y^2 + z^2
Cho x, y, z là các số dương thỏa mãn: x+y+z=3. Tìm GTLN của P=1/x^2+y+z + 1/y^2+x+z + 1/z^2+x+y
cho x,y,z là các số dương thỏa mãn điều kiện x+y+z=2.CMR: (x^2/y+z)+(y^2/z+x)+(z^2/x+y) lớn hơn hoặc bằng 1
\(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+x\right)^2}{y+z+z+x+x+y}=\frac{x+y+x}{2}=1\)
Dấu ' =' xảy ra khi \(x=y=z=\frac{2}{3}\)
Cho x, y, z là các số thực thoả mãn: \(\left\{{}\begin{matrix}x+y+z=1\\x^2+y^2+z^2=1\\x^3+y^3+z^3=1\end{matrix}\right.\)
Tính: \(M=x^{10}+y^{100}+z^{1000}\)
Lời giải:
Ta có:
$(x+y+z)^3=x^3+y^3+z^3+3(x+y)(y+z)(x+z)$
$\Leftrightarrow 1^3=1+3(x+y)(y+z)(x+z)$
$\Leftrightarrow (x+y)(y+z)(x+z)=0$
$\Rightarrow x+y=0$ hoặc $y+z=0$ hoặc $x+z=0$
Không mất tổng quát giả sử $x+y=0$
Kết hợp với $x+y+z=1\Rightarrow z=1$
$\Rightarrow x^2+y^2=0$. Kết hợp với $x+y=0$ suy ra $x=y=0$
Do đó: $M=0^{10}+0^{100}+1^{1000}=1$
TH $y+z=0$ và $z+x=0$ ta cũng thu được điều tương tự
Vậy $M=1$
cho x,y,z là các số thực thỏa mãn -1<=x,y,z <=1 và x+y+z =o. tìm GTNN biểu thức :P=căn bậc 2 1+x+y^2 +căn bậc 2 của 1+y+z^2 + căn bậc 2 của 1+z+x^2
CHO X,Y,Z LÀ 3 số dương thoả mãn\(\dfrac{1}{x}\)+\(\dfrac{1}{y}\)+\(\dfrac{1}{z}\)=2016
tìm GTLN của P=\(\dfrac{x+y}{x^2+y^2}\)+\(\dfrac{y+z}{y^2+z^2}\)+\(\dfrac{z+x}{z^2+x^2}\)
* Có BĐT : \(\dfrac{4}{x+y}\le\dfrac{1}{x}+\dfrac{1}{y}\) với $x,y>0$ ( Chứng minh bằng xét hiệu )
Ta có BĐT : \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\Rightarrow\dfrac{x+y}{x^2+y^2}\le\dfrac{2\left(x+y\right)}{\left(x+y\right)^2}=\dfrac{2}{x+y}\)
Chứng minh tương tự khi đó :
\(P\le\dfrac{2}{x+y}+\dfrac{2}{y+z}+\dfrac{2}{z+x}\)
\(\Rightarrow2P\le\dfrac{4}{x+y}+\dfrac{4}{y+z}+\dfrac{4}{z+x}\le\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{z}+\dfrac{1}{x}=2.\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=4032\)
\(\Rightarrow P\le2016\)
Cho các số x,y,z thỏa mãn:
x+y+z=1 và x/(y+z)+y/(z+x)+z/(x+y)=1.Tính x2/(y+z)+y2/(x+z)+z2/(x+y)+?
Lần sau bạn nhớ gửi đường dẫn câu hỏi nhé:
vào tìm câu hỏi qua Thông kế--> câu hỏi khác--> mỏi và ngại lắm.
\(x+y+z=1\left(1\right)\)
\(\frac{x}{z+z}+\frac{y}{\left(z+x\right)}+\frac{z}{\left(x+y\right)}=1\left(2\right)\)
Lấy (1) nhân (2)
\(\Leftrightarrow\left(x+y+z\right)\left(\frac{x}{z+y}+\frac{y}{\left(z+x\right)}+\frac{z}{\left(x+y\right)}\right)=1\)
\(\Leftrightarrow\left(\frac{x^2}{z+y}+\frac{y^2}{\left(z+x\right)}+\frac{z^2}{\left(x+y\right)}\right)+\left(x+y\right)\frac{z}{\left(x+y\right)}+\left(y+z\right).\frac{x}{\left(z+y\right)}+\left(x+z\right).\frac{y}{\left(z+x\right)}=1\)
\(\Leftrightarrow\left(\frac{x^2}{z+y}+\frac{y^2}{\left(z+x\right)}+\frac{z^2}{\left(x+y\right)}\right)+\left(x+y+z\right)=1\)
\(\Leftrightarrow\left(\frac{x^2}{z+y}+\frac{y^2}{\left(z+x\right)}+\frac{z^2}{\left(x+y\right)}\right)+1=1\)
\(\Rightarrow\left(\frac{x^2}{z+y}+\frac{y^2}{\left(z+x\right)}+\frac{z^2}{\left(x+y\right)}\right)=0\)
Chưa thạo bước 2 nhân phân phối bt hết ra rồi ghép lại
(mình hay lang thang xem lời giải => thấy cách nhân ghép luôn đỡ mỏi)
cho x,y,z là các số thực dương thỏa mãn x+y+z=xyz.CMR
\(\dfrac{x}{1+x^2}+\dfrac{2y}{1+y^2}+\dfrac{3z}{1+z^2}=\dfrac{xyz\left(5x+4y+3z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
Cho x,y,z là các số thực dương thỏa mãn \(x^2+y^2+z^2=3\).Tìm GTNN của M=\(\frac{x^2+1}{x}+\frac{y^2+1}{y}+\frac{z^2+1}{z}-\frac{1}{x+y+z}\)
Cho các số thực dương x,y,z thỏa mãn xyz ≥ 1.Tìm GTNN của \(P=\dfrac{x^3-1}{x^2+y+z}+\dfrac{y^3-1}{x+y^2+z}+\dfrac{z^3-1}{x+y+z^2}\)
\(x,y,z>0\)
Áp dụng BĐT Caushy cho 3 số ta có:
\(x^3+y^3+z^3\ge3\sqrt[3]{x^3y^3z^3}=3xyz\ge3.1=3\)
\(P=\dfrac{x^3-1}{x^2+y+z}+\dfrac{y^3-1}{x+y^2+z}+\dfrac{z^3-1}{x+y+z^2}\)
\(=\dfrac{\left(x^3-1\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)}+\dfrac{\left(y^3-1\right)^2}{\left(x+y^2+z\right)\left(y^3-1\right)}+\dfrac{\left(z^3-1\right)^2}{\left(x+y+z^2\right)\left(x^3-1\right)}\)
Áp dụng BĐT Caushy-Schwarz ta có:
\(P\ge\dfrac{\left(x^3+y^3+z^3-3\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)}\)
\(\ge\dfrac{\left(3-3\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)}=0\)
\(P=0\Leftrightarrow x=y=z=1\)
Vậy \(P_{min}=0\)