Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn ngọc Khế Xanh
Xem chi tiết
Nguyễn Huy Tú
20 tháng 4 2021 lúc 21:14

Ta có : \(P=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2019}-\dfrac{1}{2020}=1-\dfrac{1}{2020}=\dfrac{2019}{2020}\)

mà \(2019< 2020\)nên P < 1 ( đpcm ) 

dream XD
28 tháng 4 2021 lúc 11:58

\(P=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{2019.2021}\) 

\(P=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2019}-\dfrac{1}{2021}\) 

\(P=1-\dfrac{1}{2021}\) 

\(P=\dfrac{2020}{2021}\)

Vì \(\dfrac{2020}{2021}< 1\) ⇒ \(P< 1\) ( điều phải chứng minh ) 

Nguyễn Thu Trang
Xem chi tiết
Nguyễn Trần Gia Huy
Xem chi tiết
Bùi Thanh Hà
Xem chi tiết
Akai Haruma
2 tháng 7 2023 lúc 0:25

Lời giải:
Gọi tích trên là $A$

Xét thừa số tổng quát: $1+\frac{1}{n(n+2)}=\frac{n(n+2)+1}{n(n+2)}=\frac{(n+1)^2}{n(n+2)}$

Thay $n=1,2,3....,2019$ ta có:

$A=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}....\frac{2020^2}{2019.2021}$

$=\frac{2^2.3^2...2020^2}{(1.3)(2.4)(3.5)...(2019.2021)}$

$=\frac{(2.3....2020)(2.3...2020)}{(1.2.3...2019)(3.4...2021)}$

$=2020.\frac{2}{2021}=\frac{4040}{2021}$

Lê Diệp Anh
Xem chi tiết
Lục Minh Hoàng
23 tháng 7 2015 lúc 21:13

a)\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}\)

\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{7}\right)\)

\(=\frac{1}{2}.\frac{6}{7}\)

\(=\frac{3}{7}\)

b)\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2007.2009}+\frac{1}{2009.2011}\)

\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2009}-\frac{1}{2011}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{2011}\right)\)

\(=\frac{1}{2}.\frac{2010}{2011}\)

\(=\frac{1005}{2011}\)

Trịnh Quang
Xem chi tiết
Leonor
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 6 2023 lúc 20:29

Sửa đề: A=(1+1/1*3)(1+1/2*4)*...*(1+1/2019*2021)

\(=\dfrac{2^2}{\left(2-1\right)\left(2+1\right)}\cdot\dfrac{3^2}{\left(3-1\right)\left(3+1\right)}\cdot...\cdot\dfrac{2020^2}{\left(2020-1\right)\left(2020+1\right)}\)

\(=\dfrac{2}{1}\cdot\dfrac{3}{2}\cdot...\cdot\dfrac{2020}{2019}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{2020}{2021}=2020\cdot\dfrac{2}{2021}=\dfrac{4040}{2021}\)

Leonor
Xem chi tiết
nguyendang
Xem chi tiết
Toru
25 tháng 8 2023 lúc 21:31

\(\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+...+\dfrac{1}{2009\cdot2011}\)

\(=\dfrac{1}{2}\cdot\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{2009\cdot2011}\right)\)

\(=\dfrac{1}{2}\cdot\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2009}-\dfrac{1}{2011}\right)\)

\(=\dfrac{1}{2}\cdot\left(1-\dfrac{1}{2011}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{2010}{2011}=\dfrac{1005}{2011}\)

BÍCH THẢO
25 tháng 8 2023 lúc 21:32

= 1/2 . (1/1 - 1/3 + 1/3 - 1/5 +... + 1/2009 - 1/2011)

= 1/2 . (1/1 - 1/2011)

= 1/2 . 2010 / 2011

= 1005/2011