\(\frac{x^2+5}{x+3}< 0\)
MN GIÚP MK VS , MK CẦN GẤP Ạ
1,Tìm x
a,2x + (1/2+5/3)=(2/3)^3
mn giúp mk vs ạ......mk đg cần gấp ^^
2x + 13/6 =8/27
2x = 8/27 - 13/6
2x = - 101/54
x = - 101/54 : 2
x = - 101/108
\(1,\)
\(2x\left(x-3\right)-\left(3-x\right)=0\)
\(\Leftrightarrow2x\left(x-3\right)+\left(x-3\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\x-3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=3\end{cases}}\)
\(2,\)
\(3x\left(x+5\right)-6\left(x+5\right)=0\)
\(\Leftrightarrow\left(3x-6\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-6=0\\x+5=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}\)
\(3,\)
\(x^4-x^2=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\x^2-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
\(4,\)
\(x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
\(5,\)
\(x\left(x+6\right)-10\left(x-6\right)=0\)
\(\Leftrightarrow x^2+6x-10x+60=0\)
\(\Leftrightarrow x^2-4x+60=0\)
\(\Leftrightarrow x^2-4x+4+56=0\)
\(\Leftrightarrow\left(x-2\right)^2=-56\)(Vô lý)
=> Phương trình vô nghiệm
tìm giá trị nhỏ nhất m của hàm số \(f\left(x\right)=\frac{\left(x+2\right)\left(x+8\right)}{x}\) với x>0
Mn giải giúp mk vs ạ ..mk cần gấp
1) giải pt:
\(\sqrt{x-3}-2\sqrt{x^2-9}=0\)
giúp mk vs ạ mk cần gấp
ĐKXĐ: \(x\ge3\)
\(\Leftrightarrow\sqrt{x-3}=2\sqrt{x^2-9}\)
\(\Leftrightarrow x-3=4\left(x-3\right)\left(x+3\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\4\left(x+3\right)=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{11}{4}\left(loại\right)\end{matrix}\right.\)
giải pt:
a, 4x - 10.2x + 16 = 0
b, (2x2 -3x-1)2 - 3(2x2 - 3x -5)-16=0
Ai giúp mk vs đi ạ mk cần gấp ạ
Thanks mn ạ
a, \(4^x-10.2^x+16=0\Leftrightarrow\left(2^x\right)^2-10.2^x+16=0\)
Đặt \(2^x=t\Rightarrow t^2-10t+16=0\Leftrightarrow\orbr{\begin{cases}t=8\\t=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
b. Đặt \(2x^2-3x-1=t\Rightarrow t^2-3\left(t-4\right)-16=0\)
\(\Leftrightarrow t^2-3t-28=0\Leftrightarrow\orbr{\begin{cases}t=7\\t=-4\end{cases}}\)
Thế vào rồi giải tiếp em nhé.
cho x,y thoả mãn : x3+2y2-4y +3=0
x2+x2y2-2y=0
tính Q=x2+y2
nhờ mn giúp mk vs ạ
mình đang cần gấp
\(\Leftrightarrow\left\{{}\begin{matrix}x^3+2y^2-4y+3=0\\2x^2+2x^2y^2-4y=0\left(1\right)\end{matrix}\right.\Rightarrow}x^3+2y^2-4y-2x^2-2x^2y^2+4y=0\Rightarrow x^3+1-2x^2y^2+2y^2-2x^2+2=0\Rightarrow\left(x+1\right)\left(x^2-x+1\right)-2y^2\left(x-1\right)\left(x+1\right)-2\left(x-1\right)\left(x+1\right)=0\Rightarrow\left(x+1\right)\left(x^2-x+1-2xy^2+2y^2-2x+2\right)=0\Rightarrow x=-1\)Thay x=-1 vào (1) ta được y2-2y+1=0⇒ (y-1)2=0⇒y-1=0⇒y=1
Do đó Q=x2+y2=(-1)2+12=2
1) giải pt:
a) \(\sqrt{2-3x}=2\)
b) \(\sqrt{x^2+4x+4}=x-2\)
c) \(\sqrt{x-3}-2\sqrt{x^2-9}=0\)
giúp mk vs ạ mk cần gấp
a) ĐKXĐ: x <= 2/3
Pt --> 2 - 3x = 4
<=> 3x = -2
<=> x = -2/3 (thỏa)
b) ĐKXĐ: x >= 2
Pt --> x^2 + 4x + 4 = x^2 - 4x + 4
<=> 8x = 0<=> x = 0(loại)
a: Ta có: \(\sqrt{2-3x}=2\)
\(\Leftrightarrow2-3x=4\)
\(\Leftrightarrow3x=-2\)
hay \(x=-\dfrac{2}{3}\)
b: Ta có: \(\sqrt{x^2+4x+4}=x-2\)
\(\Leftrightarrow\left|x+2\right|=x-2\)
\(\Leftrightarrow x+2=2-x\left(x< -2\right)\)
\(\Leftrightarrow x=0\left(loại\right)\)
1; (x - 3/5) : -1/3 = 2/5
2; 3/7 x - 2/3 x = 10/21
Ai giúp mk vs ạ mk cần gấp lắm mơn
\(\left(x-\frac{3}{5}\right)=\frac{2}{5}×-\frac{1}{3}\)
\(\left(x-\frac{3}{5}\right)=-\frac{2}{165}\)
\(x=-\frac{2}{165}+\frac{3}{5}\)
\(x=\frac{97}{165}\)
vậy \(x=\frac{97}{165}\)
\(x×\left(\frac{3}{7}+\frac{2}{3}\right)=\frac{10}{21}\)
\(x×\frac{23}{21}=\frac{10}{21}\)
\(x=\frac{10}{21}:\frac{23}{21}\)
\(x=\frac{10}{23}\)
vậy \(x=\frac{10}{23}\)
\(\left(x-\frac{3}{5}\right):\frac{-1}{3}=\frac{2}{5}\)
=> \(x-\frac{3}{5}=\frac{2}{5}\cdot\left(-\frac{1}{3}\right)=-\frac{2}{15}\)
=> \(x=-\frac{2}{15}+\frac{3}{5}=-\frac{2}{15}+\frac{9}{15}=\frac{7}{15}\)
\(\frac{3}{7}x-\frac{2}{3}x=\frac{10}{21}\)
=> \(\left(\frac{3}{7}-\frac{2}{3}\right)x=\frac{10}{21}\)
=> \(-\frac{5}{21}x=\frac{10}{21}\)
=> \(x=\frac{10}{21}:\frac{-5}{21}=\frac{10}{21}\cdot\frac{-21}{5}=-2\)
Hai bài của ☆luffy cute☆ đều sai hết , xem xét lại đi nhé
1 ) \(\left(x-\frac{3}{5}\right)\div-\frac{1}{3}=\frac{2}{5}\)
\(\Rightarrow x-\frac{3}{5}=\frac{2}{5}\cdot\left(-\frac{1}{3}\right)=-\frac{2}{15}\)
\(\Rightarrow x=-\frac{2}{15}+\frac{3}{5}=-\frac{2}{15}+\frac{9}{15}\)
\(\Rightarrow x=\frac{7}{15}\)
2 ) \(\frac{3}{7}x-\frac{2}{3}x=\frac{10}{21}\)
\(\Rightarrow\left(\frac{3}{7}-\frac{2}{3}\right)x=\frac{10}{21}\)
\(\Rightarrow-\frac{5}{21}x=\frac{10}{21}\)
\(\Rightarrow x=\frac{10}{21}\div-\frac{5}{21}\)
\(\Rightarrow x=-2\)
(2) giải các pt sau bằng công thức nghiệm (hoặc công thức nghiện thu gọn)
1) \(x^2-11x+30=0\)
2) \(x^2-x-20=0\)
3) \(x^2+14x+24=0\)
4) \(3x^2+8x-2=0\)
giúp mk vs ạ mk đang cần gấp
\(1,\Delta=\left(-11\right)^2-4\cdot30=1\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{11-1}{2}=5\\x=\dfrac{11+1}{2}=6\end{matrix}\right.\\ 2,\Delta=\left(-1\right)^2-4\left(-20\right)=81\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1-\sqrt{81}}{2}=-4\\x=\dfrac{1+\sqrt{81}}{2}=5\end{matrix}\right.\\ 3,\Delta=14^2-4\cdot24=100\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-14-\sqrt{100}}{2}=-12\\x=\dfrac{-14+\sqrt{100}}{2}=-2\end{matrix}\right.\\ 4,\Delta=8^2-4\left(-2\right)3=88\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-8-\sqrt{88}}{6}=\dfrac{-4+\sqrt{22}}{3}\\x=\dfrac{-8+\sqrt{88}}{6}=\dfrac{-4-\sqrt{22}}{3}\end{matrix}\right.\)
1) Δ = (-11)2 -4.1.30 = 1 > 0 ⇒ Phương trình đã cho có hai nghiệm phân biệt, \(\sqrt{\Delta}\)=1.
x1 = \(\dfrac{-\left(-11\right)+1}{2.1}\) = 6, x2 = \(\dfrac{-\left(-11\right)-1}{2.1}\) = 5.
2) Δ = (-1)2 -4.1.(-20) = 81 > 0 ⇒ Phương trình đã cho có hai nghiệm phân biệt, \(\sqrt{\Delta}\)=9.
x1 = \(\dfrac{-\left(-1\right)+9}{2.1}\) = 5, x2 = \(\dfrac{-\left(-1\right)-9}{2.1}\) = -4.
3) Δ' = 72 -1.24 = 25 > 0 ⇒ Phương trình đã cho có hai nghiệm phân biệt, \(\sqrt{\Delta'}\)=5.
x1 = \(\dfrac{-7+5}{1}\) = -2, x2 = \(\dfrac{-7-5}{1}\) = -12.
4) Δ' = 42 -3.(-2) = 22 > 0 ⇒ Phương trình đã cho có hai nghiệm phân biệt, \(\sqrt{\Delta'}\)=\(\sqrt{22}\).
x1 = \(\dfrac{-4+\sqrt{22}}{3}\), x2 = \(\dfrac{-4-\sqrt{22}}{3}\).