A(x) = x^3 - 3x^2 + 5x + 3 ;
B(x) = -x^3 + 4x^2 + x^4 - 5x + 3
a/ Tính M(x) = A(x) + B(x) và N(x) = A(x) - B(x)
b/ Tính M(1). Giá trị x = 1 có phải là nghiệm của M(x) không? Vì sao?
c/ Tìm nghiệm của M(x)
Tìm x biết a) (x^2-4x+5)_(x^2-2x+1)=3 lớp 7
b)(4x^3-5X^2+3x-1)+(3-5x+5x^2-4x^3)=2
c)(3x-2)-(5x+4)=(x-3)-(X+5)
a, \(-4x+5+2x-1=3\Leftrightarrow-2x=-1\Leftrightarrow x=\dfrac{1}{2}\)
b, \(-2x+2=2\Leftrightarrow x=0\)
c, \(-2x-6=-8\Leftrightarrow x=1\)
1. Rút Gọn
a) -5x (x-3).(2x+4)-(x+3)(x-3)+(5x-2)(3x+4)
b) (4x-1)x(3x+1)-5x^2x(x-3)-(x-4)x(x-5)-7(x^3-2x^2+x-1)
c) (5x-7)(x-9)-(3-x)(2-5x)-2x(x-4)
d)(5x-4)(x+5)-(x+1)(x^2-6)-5x+19
e)(9x^2-5)(x-3)-3x^2(3x+9)-(x-5)(x+4)-9x^3
g) (x-1)^2 - (x+2)^2
Thanks mn nhiều ạ
\(a,-5x\left(x-3\right)\left(2x+4\right)-\left(x+3\right)\left(x-3\right)+\left(5x-2\right)\left(3x+4\right)\)
\(=-5x\left(2x^2-x-12\right)-\left(x^2-9\right)+15x^2+20x-6x-8\)
\(=-10x^3+5x^2+60x-x^2+9+15x^2+20x-6x-8\)
\(=-10x^3+19x^2+74x+1\)
\(b,\left(4x-1\right)x\left(3x+1\right)-5x^2.x\left(x-3\right)-\left(x-4\right)x\left(x-5\right)\)\(-7\left(x^3-2x^2+x-1\right)\)
\(=\left(4x^2-x\right)\left(3x+1\right)-5x^4-15x^3-\left(x^2-4x\right)\left(x-5\right)\)\(-7x^3+14x^2-7x+7\)
\(=12x^3+x^2-x-5x^4-15x^3-x^3+9x^2+20x\)\(-7x^3+14x^2-7x+7\)
\(=-5x^4-11x^3+24x^2+12x+7\)
\(c,\left(5x-7\right)\left(x-9\right)-\left(3-x\right)\left(2-5x\right)-2x\left(x-4\right)\)
\(=5x^2-52x+63-6+17x-5x^2-2x^2+8x\)
\(=-2x^2-27x+57\)
\(d,\left(5x-4\right)\left(x+5\right)-\left(x+1\right)\left(x^2-6\right)-5x+19\)
\(=5x^2+21x-20-x^3-x^2+6x+6-5x+19\)
\(=-x^3+4x^2+22x+5\)
\(e,\left(9x^2-5\right)\left(x-3\right)-3x^2\left(3x+9\right)-\left(x-5\right)\left(x+4\right)-9x^3\)
\(=9x^3-27x^2-5x+15-9x^3-27x^2-x^2+x+20-9x^3\)
\(=-9x^3-55x^2+4x+35\)
\(g,\left(x-1\right)^2-\left(x+2\right)^2\)
\(=x^2-2x+1-x^2-4x-4\)
\(=-6x-3\)
a,\(\sqrt{5X^2+X+3}-2\sqrt{5x-1}+X^2-3X+3=0\)
b,\(^{X^2-X-4+3X\sqrt{5-3X^2}=0}\)
a, ĐK: \(x\ge\dfrac{1}{5}\)
\(pt\Leftrightarrow\sqrt{5x^2+x+3}+5x-1-2\sqrt{5x-1}+1+x^2+2x+1=-2\)
\(\Leftrightarrow\sqrt{5x^2+x+3}+\left(\sqrt{5x-1}-1\right)^2+\left(x+1\right)^2=-2\)
\(\Rightarrow\) Phương trình vô nghiệm
Thực hiện phép tính
a, (2x^3-4x+5x):(-3/2x)
b, (4x^3-5x+x):(2x-1)
c, (-3x^4+5x^3+6x^2-7x+1):(x^2+3x-1)
đ, (3^3-5x+2):(x-3)
a: \(=2x^3:\dfrac{-3}{2}x+4x:\dfrac{3}{2}x-5:\dfrac{3}{2}\)
=-4/3x^2+8/3-10/3
=-4/3x^2-2/3
d: \(\dfrac{3x^3-5x+2}{x-3}=\dfrac{3x^3-9x^2+9x^2-27x+22x-66+68}{x-3}\)
\(=3x^2+9x+22+\dfrac{68}{x-3}\)
A= 5x+ /5-x/+ 5 khi x<5
B= 5x+10+/3x/ khi x ≥ 0 và x< 0
C= /x-3/ -3x+15 khi x≤0 và x>0
D=/x-3/ - 3x+ 15 khi x≥3 và x< 3
E= 5x+6+ /x+2/ khi x≥-2 và x<-2
HELPPPPPPP!!!!!!!!!!!!!!!!!!!!!!
a: x<5 thì 5-x>0
A=5x+5-x+5=4x+10
b: Khi x>=0 thì \(B=5x+10+3x=8x+10\)
Khi x<0 thì B=5x+10-3x=2x+10
d: Khi x>=3 thì \(D=x-3-3x+15=-2x+12\)
Khi x<3 thì D=3-x-3x+15=-4x+18
GPT sau:
a) ( x-1)(5x+3)= (3x - 8 )(x-1)
b) 3x ( 25x + 15 )- 35 ( 5x+3) = 0
c) (2-3x ) ( x-11)=(3x-2)(2- 5x)
Giups mk vs thank cacs bn
b) PT \(\Leftrightarrow15x\left(5x+3\right)-35\left(5x+3\right)=0\)
\(\Leftrightarrow\left(15x-35\right)\left(5x+3\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=-\dfrac{3}{5}\end{matrix}\right.\)
Vậy \(S=\left\{-\dfrac{3}{5};\dfrac{7}{3}\right\}\)
c) PT \(\Leftrightarrow\left(2-3x\right)\left(x-11\right)+\left(2-3x\right)\left(2-5x\right)=0\)
\(\Leftrightarrow\left(2-3x\right)\left(-9-4x\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{9}{4}\end{matrix}\right.\)
Vậy \(S=\left\{\dfrac{2}{3};-\dfrac{9}{4}\right\}\)
a)(x-1)(5x+3)=(3x-8)(x-1)
\(\Leftrightarrow\)(x-1)(5x+3)-(3x-8)(x-1)=0
\(\Leftrightarrow\left(x-1\right)\left(5x-3-3x+8\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x-5\right)=0\)
\(\left[{}\begin{matrix}x-1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{5}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{1;\dfrac{5}{2}\right\}\)
a) Ta có: \(\left(x-1\right)\left(5x+3\right)=\left(3x-8\right)\left(x-1\right)\)
\(\Leftrightarrow5x^2+3x-5x-3=3x^2-3x-8x+8\)
\(\Leftrightarrow5x^2-2x-3=3x^2-11x+8\)
\(\Leftrightarrow5x^2-2x-3-3x^2+11x-8=0\)
\(\Leftrightarrow2x^2+9x-11=0\)
\(\Leftrightarrow2x^2+11x-2x-11=0\)
\(\Leftrightarrow x\left(2x+11\right)-\left(2x+11\right)=0\)
\(\Leftrightarrow\left(2x+11\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+11=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-11\\x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{11}{2}\\x=1\end{matrix}\right.\)
Vậy: \(S=\left\{-\dfrac{11}{2};1\right\}\)
b) Ta có: \(3x\left(25x+15\right)-35\left(5x+3\right)=0\)
\(\Leftrightarrow3x\cdot5\cdot\left(5x+3\right)-35\left(5x+3\right)=0\)
\(\Leftrightarrow15x\left(5x+3\right)-35\left(5x+3\right)=0\)
\(\Leftrightarrow\left(5x+3\right)\left(15x-35\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x+3=0\\15x-35=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=-3\\15x=35\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{5}\\x=\dfrac{7}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{-\dfrac{3}{5};\dfrac{7}{3}\right\}\)
c) Ta có: \(\left(2-3x\right)\left(x-11\right)=\left(3x-2\right)\left(2-5x\right)\)
\(\Leftrightarrow2x-22-3x^2+33x=6x-15x^2-4+10x\)
\(\Leftrightarrow-3x^2+35x-22=-15x^2+16x-4\)
\(\Leftrightarrow-3x^2+35x-22+15x^2-16x+4=0\)
\(\Leftrightarrow12x^2+19x-18=0\)
\(\Leftrightarrow12x^2+27x-8x-18=0\)
\(\Leftrightarrow3x\left(4x+9\right)-2\left(4x+9\right)=0\)
\(\Leftrightarrow\left(4x+9\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+9=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=-9\\3x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{9}{4}\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{-\dfrac{9}{4};\dfrac{2}{3}\right\}\)
a) ( 2x^4-5x^2+x^3-3-3x):(x^2-3)
b)(2x^3+5x^2+3):(2x^2-x+1)
c) (2x+4y)^2 : (x+2y)-(9x^3-12x^2-3x):(-3x)-3(x^2+3)
Giải các bất phương trình sau và biểu diễn tập nghiệm trên trục số:
a.3x-5 >15-x b.3(x-2).(x+2)<3x^2+x
c.(2x+1)^2+(1-x).3x<hoặc=(x+2)^2
d.5x-20/3 - 2x^2+x/2 > x.(1-3x)/3 -5x/4
e.4-2x <hoặc= 3x-6
f.(x+4).(5x-1)>5x^2+16x+2
g)x.(2x-1)-8<5-2x(1-x)
h)3x-1/4 - 3.(x-2)/8 - 1>5-3x/2
a: 3x-5>15-x
=>4x>20
hay x>5
b: \(3\left(x-2\right)\left(x+2\right)< 3x^2+x\)
=>3x2+x>3x2-12
=>x>-12
Giải các bất phương trình sau và biểu diễn tập nghiệm trên trục số:
a.3x-5 >15-x b.3(x-2).(x+2)<3x^2+x
c.(2x+1)^2+(1-x).3x<hoặc=(x+2)^2
d.5x-20/3 - 2x^2+x/2 > x.(1-3x)/3 -5x/4
e.4-2x <hoặc= 3x-6
f.(x+4).(5x-1)>5x^2+16x+2
g)x.(2x-1)-8<5-2x(1-x)
h)3x-1/4 - 3.(x-2)/8 - 1>5-3x/2
Cho đa thức: A(x) = 2x^4 – 5x^3 + 7x – 5 + 4x^3 + 3x^2 + 2x + 3.
B(x) = 5x^4 - 3x^3 + 5x – 3x^4 – 2x^3 + 9 – 6x
C(x) = x^4 + 4x^2 + 5.
a, Thu gọn và sắp xếp các hạng tử của đa thức A(x) và B(x) theo lũy thừa giảm dần của biến, cho biết bậc, hệ số cao nhất và hệ số tự do của A(x) và B(x).
b, Biết M(x) – A(x) = B(x); N(x) + A(x) = B(x), tính M(x) và N(x).
c, Biết Q(x) = A(x) – B(x), không thực hiện phép tính, hãy cho biết Q(x) bằng bao nhiêu?
d, Chứng minh rằng C(x) không có nghiệm
GIÚP MÌNH VỚI Ạ VÌ MAI MÌNH THI HK2 MÀ VẪN CHƯA HIỂU BÀI :,(
a: \(A\left(x\right)=2x^4-x^3+3x^2+9x-2\)
\(B\left(x\right)=2x^4-5x^3-x+9\)
\(C\left(x\right)=x^4+4x^2+5\)
A(x): bậc 4; hệ số cao nhất là 2; hệ số tự do là -2
B(x): bậc 4; hệ số cao nhất là 4; hệ số tự do là 9
b: M(x)=A(x)+B(x)=4x^4-6x^3+3x^2+8x+7
N(x)=B(x)-A(x)=-4x^3-3x^2-10x+11
c: Q(x)=-N(x)=4x^3+3x^2+10x-11